Nom:.....

Devoir de mathématiques n°7.

Durée du devoir : 2h, l'usage de la calculatrice est autorisé.

Exercice I : Etude de fonction :

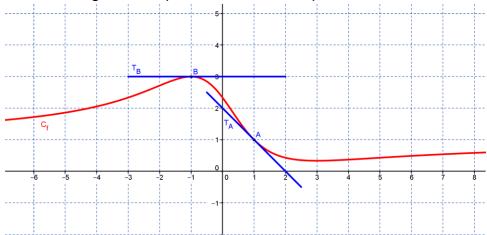
Partie 1 : Lecture graphique.(/ 2)

Partie 2 : Etude de fonction.(/ 4)

Partie 3 : Application économique.(/ 2)

Exercice II : Suites numériques :

Partie 1 : Comparaison de deux suites.(/ 4)


Partie 2 : une suite particulière.(/ 4)

Exercice III: Statistiques: (/4)

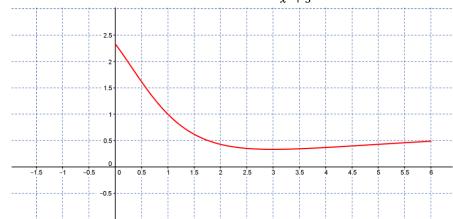
Exercice I: Etude de fonction:

Partie 1 : Lecture graphique.(/ 2)

On considère la courbe C_f ci-dessous, représentant une fonction f définie sur IR. A et B sont deux points de C_f , T_A et T_B les tangentes respectives à C_f en ces points.

- 1) Déterminer graphiquement f(-1) et f(1).
- **2)** Déterminer graphiquement f'(-1) et f'(1).
- 3) Graphiquement, C_f admet-elle une autre tangente horizontale que T_B
- **4)** Etablir d'après le graphique le tableau de variations de f.

Partie 2 : Etude de fonction.(/ 4)


La fonction f définie dans la partie 1 a pour expression $f(x) = \frac{x^2 - 4x + 7}{x^2 + 3}$.

- 1) Déterminer par le calcul f(-1) et f(1).
- **2)** Montrer que l'expression de f' est $f'(x) = \frac{4(x^2 2x 3)}{(x^2 + 3)^2}$.
- 3) Déterminer par le calcul f'(-1) et f'(1).
- **4)** Etudier le signe de g définie par $g(x) = x^2 2x 3$.
- **5)** En déduire le tableau de signe de f'(x).
- **6)** En déduire le tableau de variations de f.

Partie 3: Application économique. (/ 2)

Une entreprise produit entre 0 et 600 objets. Son coût de production <u>en milliers d'euros</u> est modélisé par la fonction C définie sur [0 ; 6] par $C(x) = \frac{x^2 - 4x + 7}{x^2 + 3}$ pour x <u>centaines</u> d'objets.

On a représenté C

- 1) Déterminer le nombre d'objet à produire pour que le coût soit minimal.
- 2) Un objet est vendu 5 €, donner l'expression R(x) de la recette en fonction de x.
- 3) Représenter la fonction R dans le repère ci-dessus.
- 4) Déterminer graphiquement le nombre d'objet à produire pour avoir un bénéfice positif.

Exercice II : Suites numériques :

Les parties 1 et 2 sont indépendantes.

Partie 1 : Comparaison de deux suites.(/ 4)

On souhaite comparer deux placements :

- placement A: dépôt initial de 500 € et un versement mensuel de 10 €;
- placement B : dépôt initial de 400 € et un versement mensuel de 5 % du capital placé.

On note a_n le capital en euros, obtenu par le placement A, et on note b_n le capital en euros, obtenu par le placement B, après n mois de versement. Ainsi $a_0 = 500$ et $b_0 = 400$.

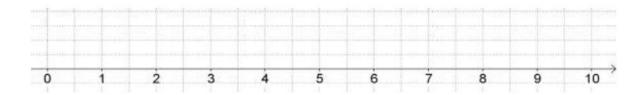
- 1) a. Calculer a₁ et a₂.
 - **b.** Exprimer a_{n+1} en fonction de a_n ; quelle est la nature de la suite (a_n) ?
 - **c.** En déduire l'expression de a_n en fonction de n.
 - d. Calculer a₇ et interpréter le résultat.
- 2) a. Calculer b₁ et b₂.
 - **b.** Exprimer b_{n+1} en fonction de b_n ; quelle est la nature de la suite (b_n) ?
 - **c.** En déduire l'expression de b_n en fonction de n.
 - d. Calculer b₇ et interpréter le résultat. (arrondir au centime d'euro)
- 3) Déterminer au bout de combien de mois le capital b_n devient supérieur au capital a_n.

Partie 2 : une suite particulière.(/ 4)

Le 1er janvier 2012, une grande entreprise compte 1500 employés. Une étude montre que lors de chaque année à venir, 10 % de l'effectif de l'entreprise partira à la retraite au cours de l'année. Pour ajuster ses effectifs à ses besoins, l'entreprise embauche 100 jeunes dans l'année.

Pour tout entier naturel n, on appelle un le nombre d'employés de l'entreprise le 1er janvier de l'année (2012+n) ; $u_0 = 1500$.

- 1) a. Calculer u₁ et u₂.
 - **b.** La suite (u_n) est-elle arithmétique ? géométrique ? (justifier par un calcul)
 - **c.** Expliquer pourquoi on a : $u_{n+1} = 0.9 u_n + 100$ pour tout entier naturel n.
- **2).** Pour tout entier naturel n, on pose : $v_n = u_n 1000$.
 - **a.** Calculer v_0 , v_1 et v_2 .
 - **b.** Montrer que (v_n) est une suite géométrique.
 - **c.** Exprimer alors v_n en fonction de n.
 - **d.** En déduire que $u_n = 500 \times (0, 9)^n + 1000$ pour tout entier naturel n.
- 3) En déduire l'effectif de l'entreprise en 2030.


Exercice III: Statistiques: (/4)

Voici les notes sur 10 obtenues lors d'un contrôle par les 30 élèves d'une classe :

$$1 - 7 - 4 - 2 - 2 - 9 - 6 - 6 - 8 - 7 - 3 - 7 - 2 - 3 - 4 - 7 - 5 - 7 - 8 - 1 - 0 - 3 - 4 - 6 - 7 - 10 - 6 - 5 - 3 - 7$$

1) Présenter ces données dans un tableau où figureront, pour chaque note de 0 à 10, les effectifs, les effectifs cumulés croissants et les fréquences en pourcentage. (Arrondir les pourcentages à l'unité près).

- 2) a. Déterminer la moyenne \bar{x} du devoir.
 - **b.** Déterminer la médiane, le 1er et le 3e quartile.
 - c. Représenter la série par un diagramme en boîte.

- 3) a. Calculer l'écart type σ , à 10^{-2} près.
 - **b.** Calculer (à 1 % près) le pourcentage d'élèves dont la note appartient à $[\bar{x} \sigma; \bar{x} + \sigma]$
 - **c.** Calculer (à 1 % près) le pourcentage d'élèves dont la note appartient à $[\bar{x}$ 2 σ ; \bar{x} + 2 σ]
 - **d.** Calculer (à 1 % près) le pourcentage d'élèves dont la note appartient à $[\bar{x}$ 3 σ ; \bar{x} + 3 σ]

Galileo Galilei.

« La nature est écrite en langage mathématique » Galiléo Galiléi (1564 – 1642)