Géométrie analytique.

La géométrie analytique ou cartésienne est introduite par **René Descartes (1596 - 1650),** elle permet de résoudre des problèmes de géométrie par des calculs avec l'utilisation d'un repère et de coordonnées.

I. Repère du plan.

© Exprimer un vecteur en fonction de deux vecteurs non colinéaires.
Définition : On appelle base du plan tout couple (\vec{l}, \vec{j}) de vecteurs non colinéaires.
Définition : Soit $(\vec{\imath}, \vec{\jmath})$ une base du plan et \vec{u} un vecteur. Dire que \vec{u} a pour coordonnée $(x; y)$ dans la base $(\vec{\imath}, \vec{\jmath})$ signifie que $\vec{u} =$
© Repère du plan.
Un repère du plan est donné par un point O et une base du plan $(\vec{\imath}, \vec{j})$. Soient I et J tels que $\overrightarrow{OI} = \vec{\imath}$ et $\overrightarrow{OJ} = \vec{\jmath}$. Le repère (O; I; J) peut aussi s'écrire (\vec{O} ; $\vec{\imath}$, $\vec{\jmath}$)
Définition : On appelle repère du plan tout triplet $(0; \vec{\imath}, \vec{\jmath})$ où 0 est un point et $\vec{\imath}$ et $\vec{\jmath}$ sont deux vecteurs non colinéaires. Le point 0 s'appelle
On dit que le repère (0 ; $\vec{\iota}$, \vec{j}) est orthogonal si
© Coordonnées.
Définition : Soit $(0; \vec{\iota}, \vec{j})$ un repère du plan. Dire qu'un point M a pour coordonnées $(x; y)$ dans le repère $(0; \vec{\iota}, \vec{j})$
signifie que $\overrightarrow{OM} = \dots$
Définition : Soit $(0; \vec{\iota}, \vec{\jmath})$ un repère du plan et \vec{u} un vecteur. Soit $M(x; y)$ le point tel que $\overrightarrow{OM} = \vec{u}$. Alors on dit que \vec{u} a pour coordonnées $(x; y)$ dans le repère $(0; \vec{\iota}, \vec{\jmath})$.
Remarque:
☑ Savoir-faire : Savoir déterminer les coordonnées d'un vecteur par lecture graphique :
w/ j

II. Vecteurs dans un repère du plan.

© Vecteurs défini par deux points.

Propriété : Soit $(0; \vec{t}, \vec{j})$ un repère du plan, $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.
Démonstration :
Soit $(0; \vec{t}, \vec{j})$ un repère du plan, $A(2; 1)$ $B(5; 3)$ $C(-1; -2)$ $D(-2; 3)$ $E(1; -4)$ et $F(4; -2)$. Détermine par le calcul les coordonnées de \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} .
⊕ Propriétés.
Propriété: Soit $(0; \vec{\imath}, \vec{j})$ un repère du plan, $\vec{u}(x_{\vec{u}}; y_{\vec{u}})$ et $\vec{v}(x_{\vec{v}}; y_{\vec{v}})$ deux vecteurs et k un nombre.
\bullet $\vec{u} = \vec{v} \Leftrightarrow \dots \qquad \bullet$ $\vec{u} + \vec{v} \dots \qquad \bullet$ $k \vec{u} \dots \qquad \bullet$
Soit $(0; \vec{\imath}, \vec{\jmath})$ un repère du plan, $A(2; 1)$ $B(5; 3)$ $C(-1; -2)$ $D(-2; 3)$. Détermine par le calcul les coordonnées de $3\overrightarrow{AB}$; $4\overrightarrow{CD}$ et $3\overrightarrow{AB} - 4\overrightarrow{CD}$.
Soit $(0; \vec{\imath}, \vec{j})$ un repère du plan, $A(1; 2)$ $B(-4; 3)$ $C(1; -2)$. Détermine par le calcul les coordonnées de D tel que $ABCD$ soit un parallélogramme.
III. Condition analytique de colinéarité.
© Déterminant de deux vecteurs.
Définition : Soit $(0; \vec{t}, \vec{j})$ un repère du plan et $\vec{u}(x_{\vec{u}}; y_{\vec{u}})$ et $\vec{v}(x_{\vec{v}}; y_{\vec{v}})$ deux vecteurs. On appelle déterminant des vecteurs \vec{u} et \vec{v} , le nombre : $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x_{\vec{u}} & x_{\vec{v}} \\ y_{\vec{u}} & y_{\vec{v}} \end{vmatrix} = \dots$
☑ <u>Savoir-faire : Savoir calculer le déterminant de deux vecteurs :</u>
Soit $(0; \vec{\iota}, \vec{j})$ un repère du plan, $\vec{u}(1; 2)$ et $\vec{v}(-4; 3)$ calcule $\det(\vec{u}; \vec{v})$.

Propriété : Soit \vec{u} et \vec{v} deux vecteurs. Les affirmations suivantes sont équivalentes : • \vec{u} et \vec{v} sont colinéaires • $\det(\vec{u}; \vec{v}) = 0$. Démonstration exigible : ☑ Savoir-faire : Savoir vérifier si deux vecteurs sont colinéaires : Soit $\vec{u}(1; 2)$ et $\vec{v}(-4; 3)$. Les vecteurs \vec{u} et \vec{v} sont-ils colinéaires ? ☑ Savoir-faire : Savoir vérifier si deux droites sont parallèles ou non : Soit A(-1; 1); B(3; 2) C(-2; -3) et D(6; -1). Les droites (AB) et (CD) sont-elles parallèles? ☑ Savoir-faire : Savoir vérifier si trois points sont alignés ou non : Soit A(-1; 1); B(3; 2) et C(5; 0). Les points A, B et C sont-ils alignés ? IV. Coordonnées du milieu d'un segment. Propriété : Soit $(0; \vec{\imath}, \vec{j})$ un repère du plan, $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points. ☑ Savoir-faire : Savoir déterminer les coordonnées du milieu d'un segment : Soit A(-1; 1) et B(3; 2). Détermine les coordonnées de M, milieu de [AB]. ☑ Savoir-faire : Savoir déterminer les coordonnées du symétrique d'un point : Soit A(-1; 1) et B(3; 2). Détermine les coordonnées de A', symétrique de A par rapport à B.

© Condition analytique de colinéarité.

V. Distance dans un repère orthonormé.

Propriété : Soit $(0; \vec{t}, \vec{j})$ un repère orthonormé, $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.	
Démonstration :	B(4, 4)
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Attention:	
Savoir-faire : Savoir calculer une distance dans un repère orthonormé : Soit $(0; \vec{\imath}, \vec{j})$ un repère orthonormé, $A(-1; 1)$ et $B(3; 2)$. Calcule la distance AB .	
Propriété : Soit $(0; \vec{\imath}; \vec{\jmath})$ un repère orthonormé, $\vec{u}(x_{\vec{u}}; y_{\vec{u}})$ un vecteur.	
Savoir-faire: Savoir calculer la norme d'un vecteur dans un repère orthonorme soit $(0; \vec{\imath}, \vec{j})$ un repère orthonormé, $\vec{u}(-1; 2)$ et $\vec{v}(3; -2)$. Calcule $\ \vec{u}\ $ et $\ \vec{v}\ $.	<u>mé :</u>
Savoir-faire: Savoir utiliser les distances dans un repère orthonormé: Soit $(0; \vec{\iota}, \vec{j})$ un repère orthonormé, $A(1; 1); B(3; 3)$ et $C(7; -1)$. ABC est-il rec	tangle ?
Calcule la mesure de l'angle $\widehat{\mathit{BAC}}$.	