Propriélé				
Soit z un nombre complexe	$\Theta: \bigcirc z ^2 =$	$=z\bar{z}$ $\odot \bar{z} = $	z ©	-z = z
Propriélé ROC				
Soit z_1 et z_2 deux nombres c	omplexes et n entier	naturel non nul.		. 1
		n		z ₂
<u>Démonstrations :</u>				
IV Equ	uations du sec	ond dearé da	ans C.	
Définilion			<u></u>	
Soit a , b et c des réels ave	$c \ a \neq 0$.			
On appelle <u>discriminant</u> du	$az^2 + bz + bz$	-c , le nombre rée	l, noté ∆, égal	à $b^2 - 4ac$.
Propriété —				
- Si $\Delta > 0$: L'équation $az^2 + a$	bz + c = 0 a deux sol	lutions réelles distir	octes: $z = \frac{-b+}{}$	$\frac{\sqrt{\Delta}}{\sqrt{\Delta}}$ et $z = \frac{-b - \sqrt{\Delta}}{2}$
				a = 2a
- Si $\Delta = 0$: L'équation $az^2 + a$			24	
- Si Δ < 0 : L'équation $az^2 + b$	bz + c = 0 a deux sol	utions complexes of	conjuguées : z ₁	$=\frac{-b+i\sqrt{-\Delta}}{2a}$ et $z_2=\frac{-b-i\sqrt{-\Delta}}{2a}$
				24 24
<u>Démonstrations :</u>				
☑ Savoir-faire : Savoir rés	oudre une équatio	n dans C :		
Résoudre dans C	les équations suiva	antes: a) $z^2 + 5$	= 0 b	$\int z^2 + 3z + 4 = 0$
	,	, -		,