V. Représentation dans le plan complexe.

Dans tout le chapitre, on munit le plan d'un repère orthonormé direct $(O; \vec{u}; \vec{v})$. A tout nombre complexe z = a + bi, on peut faire correspondre un unique point M de coordonnées (a; b). On dit que z est l'affixe du point M. On note M(z). Exemples: Le point F(-2; 3) a pour affixe le nombre complexe z = -2 + 3i. F(-2+3i)3 E(3i) A(1+2i)Tout point appartenant à l'axe des abscisses a pour affixe un nombre Tout point appartenant à l'axe des ordonnées a pour affixe un nombreOn appelle l'axe des ordonnées l'axe des C(-i) Axe des imaginaires Propriétés graphiques : M(a+ib)↑Axe des imaginaires © Les points d'affixes z et - z sont symétriques par rapport à l'origine du repère. M(a+ib) \odot Les points d'affixes z et \bar{z} sont symétriques par rapport à l'axe des réels. \odot Dans un repère orthonormé |z| = 0MOn appelle affixe d'un vecteur \vec{w} (a; b) le nombre complexe z = a + bi. M(3+2i)Exemples: $\vec{w}(3+2i)$ Axe des réels -Propriélé Soit $M(z_M)$ et $N(z_N)$ deux points du plan, $\vec{w}(z)$ et $\vec{w}'(z')$ sont deux vecteurs du plan. \odot Le vecteur \overrightarrow{MN} a pour affixe $z_M - z_N$ \odot Le vecteur $\vec{w} + \vec{w}'$ a pour affixe z + z'. \odot Le vecteur $k \vec{u}, k$ réel, a pour affixe kz. Démonstration :