-Définition

Tout nombre complexe z non nul de moduler r et d'argument θ s'écrit sous sa forme exponentielle $z = r e^{i\theta}$.

☑ Savoir-faire : Savoir passer de la forme algébrique à la forme exponentielle et réciproquement:

1) Ecrire les nombres complexes suivants sous la forme exponentielle :

a)
$$z_1 = -2i$$

b)
$$z_2 = -5$$

c)
$$z_3 = 2 - 2i$$

2) Ecrire les nombres complexes suivants sous la forme algébrique :

a)
$$z_3 = e^{i\frac{\pi}{6}}$$

b)
$$z_4 = 4e^{i\frac{\pi}{4}}$$

2) Propriétés

-Propriélé –

Pour tous réels θ et θ' , pour tout entier naturel n non nul,

$$\odot (e^{i\theta})^n = e^{in\theta}$$

$$\odot \frac{1}{e^{i\theta}} = e^{-i\theta}$$

$$\odot \overline{e^{i\theta}} = e^{-i\theta}$$

Remarque: La formule $(e^{i\theta})^n = e^{in\theta}$ s'appelle formule de *Moivre*.

IV. Applications à la géométrie

-Propriélé

A, B, C et D sont quatre points deux à deux distincts du plan d'affixes respectives zA, zB, zC et zD.

On a: ③ (
$$\vec{u}$$
;

$$\odot AB = |z_B - z_A|$$

☑ Savoir-faire : Savoir utiliser les nombres complexes en géométrie:

Soit A, B et C trois points d'affixes respectives $z_A = -2 - i$, $z_B = 1 - 2i$ et $z_C = -1 + 2i$.

- 1) Démontrer que le triangle ABC est isocèle en A.
- 2) Démontrer que le triangle ABC est rectangle en A.