Suites géométriques.

I. Définition d'une suite géométrique.

On considère la suite (u_n) où le rapport entre un terme et son précédent reste constant et égal à 3. Si le premier termes est éral à 2, les premiers termes est éral à 2, les premiers termes est éral à 2, les premiers termes est éral à 2.
terme est égal à 2, les premiers termes successifs sont : $u_0 = \dots ; u_1 = \dots ; u_2 = \dots ; u_2 = \dots ;$
u_3 = De façon plus générale, pour tout nombre entier n , on a u_{n+1} =
On dit que la suite (un) est une suite géométrique de raison et de premier terme
———Définition ————————————————————————————————————
On dit qu'une suite (u_n) est une <u>suite géométrique</u> s'il existe un nombre q tel que, pour tout n , u_{n+1} = Le nombre q est appelé la <u>raison</u> de la suite (u_n) .
Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élève à 4%.Chaque année, le capital est multiplié parCe capital suit une progression géométrique de raison
TI Coursin faire : Coursin démontrer autime autime est aéamétriaus :
☑ Savoir faire : Savoir démontrer qu'une suite est géométrique :
1) La suite (u_n) définie par : $u_n = 2^{n+3}$ est-elle géométrique ?
————Définition ————————————————————————————————————
Si (u_n) est une suite géométrique de raison q et de premier terme u_0 alors, pour tout n , $u_n = u_0 \times q^n$.
Exemple : On considère la suite géométrique (u_n) de premier terme $u_0 = 3$ et de raison 2.
☑ Savoir faire : Savoir déterminer la raison et le premier terme d'une suite géométrique :
1) Soit (u_n) la suite géométrique tel que $u_2 = 12$ et $u_5 = -96$. Détermine sa raison et son premier terme.
II. Sens de variations d'une suite géométrique.
On considère la suite (u_n) définie par : pour tout nombre entier n , $u_n = 3 \times 2^n$. Etudions ses variations.
Définition —
Si (u_n) est une suite géométrique de raison q , et de premier terme non nul u_0 alors :
• Pour $u_0 > 0$:
♦ Si $q > 1$ alors la suite (u_n) est croissante.
♦ Si 0 < q < 1 alors la suite (u _n) est décroissante.
• Pour $u_0 < 0$:
♦ Si q > 1 alors la suite (un) est décroissante.
\triangle Si $0 < q < 1$ alore la suito (y_i) set croissants