<u>Démonstration ROC (exigible BAC) :</u>

 X_n suit la loi binomiale B(n;p) donc la suite de variables aléatoires $Z_n = \frac{X_n - E(X_n)}{\sigma(X_n)} = \frac{X_n - np}{\sqrt{np(1-p)}}$ suit

une loi normale centrée réduite N(0;1) et d'après le théorème de Moivre-Laplace, on a :

 $\lim_{n\to+\infty} P(a \le Z_n \le b) = \int_a^b \varphi(t)dt$, pour tous réels a et b avec a < b.

Soit $\alpha \in]0$; 1[, il existe un unique réel positif u_{α} tel que $\lim_{n \to +\infty} P(-u_{\alpha} \le Z_n \le u_{\alpha}) = 1 - \alpha$

$$\text{Or } -u_{\alpha} \leq Z_n \leq u_{\alpha} \leftrightarrow -u_{\alpha} \leq \frac{X_n - np}{\sqrt{np(1-p)}} \leq u_{\alpha} \leftrightarrow p - u_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}} \leq \frac{X_n}{n} \leq p + u_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}}$$

Donc $\lim_{n\to+\infty} P(F_n \in I_n) = \lim_{n\to+\infty} P(-u_{\infty} \le Z_n \le u_{\infty}) = 1-\alpha$

2) Intervalle de fluctuation au seuil de 95%

On appelle intervalle de fluctuation au seuil 0,95 de la variable aléatoire fréquence l'intervalle :
$$I = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \; ; \; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

Exemple:

On dispose d'une urne contenant un grand nombre de boules blanches et noires. La proportion de boules blanches contenues dans l'urne est p = 0.3. On tire successivement avec remise n = 50 boules. Soit X_{50} la variable aléatoire dénombrant le nombre de boules blanches tirées. X_{50} suit la loi binomiale B(50; 0,3).

$$I_{50} = \left[0, 3 - 1, 96 \times \frac{\sqrt{0, 3 \times 0, 7}}{\sqrt{50}}; 0, 3 + 1, 96 \times \frac{\sqrt{0, 3 \times 0, 7}}{\sqrt{50}} \right] \text{ Soit } I_{50} = \left[0, 173; 0, 427 \right].$$

En effectuant 50 tirages dans cette urne, la fréquence d'apparition d'une boule blanche est comprise dans l'intervalle [0,173 ; 0,427] avec une probabilité de 0,95.

Pour 500 tirages, on obtient :
$$I_{500} = \left[0,3-1,96 \times \frac{\sqrt{0,3 \times 0,7}}{\sqrt{500}};0,3+1,96 \times \frac{\sqrt{0,3 \times 0,7}}{\sqrt{500}}\right] = \left[0,26;0,34\right]$$

On constate que l'intervalle, pour un même seuil, se resserre fortement lorsqu'on augmente le nombre de tirages.

Prise de décision

Dans ce paragraphe, la proportion du caractère étudié n'est pas connue mais est supposée être égale à p. La prise de décision consiste à valider ou invalider l'hypothèse faite sur la proportion p.

Soit f la fréquence du caractère étudié d'un échantillon de taille n.

Soit l'hypothèse : "La proportion de ce caractère dans la population est p."

Soit / l'intervalle de fluctuation asymptotique au seuil 0,95.

- Si $f \in I$, alors on accepte l'hypothèse faite sur la proportion p.
- Si f ∉ I, alors on rejette l'hypothèse faite sur la proportion p.

Remarque:

On peut interpréter cette propriété par le fait que la probabilité qu'on rejette à tort l'hypothèse sur p sachant qu'elle est vraie (le risque d'erreur) est approximativement égale à 5%.

☑ Savoir-faire : Savoir prendre une décision à l'aide d'un intervalle de fluctuation:

Un fabricant d'alarme commande auprès de son fournisseur deux types de composants électroniques : R1 et P4. Il demande 900 composants de chaque sorte. Au moment de la livraison, le service de contrôle retire 50 composants et constate que 19 sont des modèles R1.

Peut-on affirmer que la commande est respectée par le fournisseur ?