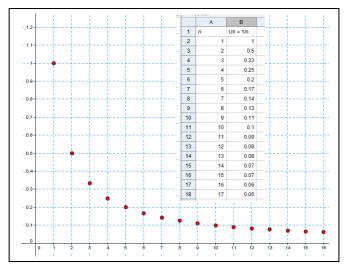
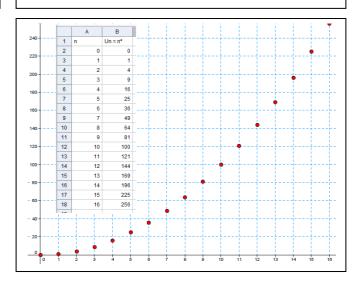

Limite d'une suite.


I. Notion de limite d'une suite.


Etudier la limite d'une suite (u_n) , c'est se demander ce que deviennent les nombres u_n lorsque n devient de plus en plus grand.

Exemples:

On considère la suite (u_n) définie par $u_n = \frac{1}{n}$. $\forall n \in \mathbb{N}^*$.

.....

.....

II. Suite convergente, suite divergente.

1) Suite convergente

Exemple: Pour tout n de \mathbb{N}^* , on considère la suite (u_n) définie par : $u_n = \frac{2n+1}{n}$.

On construit le tableau de valeurs avec des termes de la suite :

n	1	2	3	4	5	10	15	50	500
U n	3	2,5	2,333	2,25	2,2	2,1	2,067	2,02	2,002

Plus n devient grand, plus les termes de la suite semblent se rapprocher de 2.

On dit que la suite (u_n) converge vers 2 et on note : $\lim_{n\to+\infty} u_n = 2$.

2) Suite divergente

Exemple 1: Pour tout n de \mathbb{N} , on considère la suite (u_n) définie par : $u_n = n^2 + 1$.

Calculons quelques termes de cette suite : $u_0 = 0^2 + 1 = 1$, $u_1 = 1^2 + 1 = 2$, $u_2 = 2^2 + 1 = 5$, $u_{10} = 10^2 + 1 = 101$, $u_{100} = 100^2 + 1 = 10001$,

Plus n devient grand, plus les termes de la suite semblent devenir grand.

On dit que la suite (u_n) diverge vers $+\infty$ et on note : $\lim_{n \to +\infty} u_n = +\infty$.

Exemple 2: Pour tout n de \mathbb{N} , on considère la suite (v_n) définie par : $v_{n+1} = (-1)^n v_n$ et $v_0 = 2$

Calculons les premiers termes de cette suite : $v_1 = (-1)^0 v_0 = 2$, $v_2 = (-1)^1 v_1 = -2$, $v_3 = (-1)^2 v_2 = -2$

 $v_4 = (-1)^3 v_3 = 2, \ v_5 = (-1)^4 v_4 = 2.$

Lorsque n devient grand, les termes de la suite ne semblent pas se rapprocher vers une valeur unique. On dit que la suite (u_n) diverge.

14