III. Limite finie ou infinie d'une suite.

1) Limite infinie

-Définition -

- On dit que la suite (u_n) <u>admet pour limite $+\infty$ </u> si tout intervalle] a; $+\infty$ [, a réel, contient tous les termes de la suite à partir d'un certain rang et on note : $\lim_{n\to+\infty} u_n = +\infty$
- On dit que la suite (u_n) <u>admet pour limite $+\infty$ </u> si tout intervalle]- ∞ ; b [, b réel, contient tous les termes de la suite à partir d'un certain rang et on note : $\lim_{n\to+\infty} u_n = -\infty$

☑ Savoir-faire : Savoir utiliser un algorithme permettant de déterminer un rang à partir duquel une suite croissante de limite infinie est supérieure à un nombre réel A :

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier n,. $u_{n+1} = 4u_n$. Cette suite est croissante et admet pour limite $+\infty$. Ecrire un algorithme permettant de préciser le rang à partir duquel la suite est supérieure à A.

Langage naturel Entrée

Saisir le réel A

Initialisation

Affecter à n la valeur Affecter à u la valeur

Traitement des données

Tant que u A Faire

Affecter à n la valeur Affecter à u la valeur

Sortie

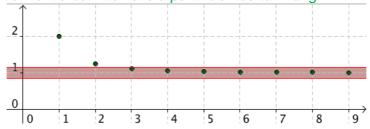
Afficher n

En appliquant cet algorithme avec A = 100, on obtient en sortie n =A partir du terme, la suite est supérieure à 100. En langage calculatrice, cela donne :

TI	CASIO
PROGRAM:SEUIL	=====SEUIL
:Input A	"A="?>A#
:0>N	0>N#
:2>U	2>U#
:While U/A	While U <a#< td=""></a#<>
:N+1>N	N+1>N#
:4*U>U	4×U>U#
:End	WhileEnd#
:Disp N	N

2) Limite finie

<u>Exemple</u>: La suite (u_n) définie sur N^* par $u_n = 1 + \frac{1}{n^2}$ a pour limite 1. En effet, les termes de la suite se resserrent autour de 1 à partir d'un certain rang. Si on prend un intervalle ouvert quelconque contenant 1, tous les termes de la suite appartiennent à cet intervalle à partir d'un certain rang.



-Définition

On dit que la suite (u_n) admet pour limite L si tout intervalle ouvert contenant L contient tous les termes de la suite à partir d'un certain rang et on note : $\lim_{n \to \infty} u_n = L$.

Une telle suite est dite convergente.

-Définilion -

Une suite qui n'est pas convergente est dite divergente.