3) Limites des suites usuelles

$$\lim_{n \to +\infty} n = +\infty \,, \ \lim_{n \to +\infty} n^2 = +\infty \,, \ \lim_{n \to +\infty} \sqrt{n} = +\infty \quad \lim_{n \to +\infty} \frac{1}{n} = 0 \,, \ \lim_{n \to +\infty} \frac{1}{n^2} = 0 \,, \ \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \,.$$

Exemple de démonstration : Démonstration de $\lim_{n\to+\infty}\frac{1}{n}=0$:

Soit un intervalle ouvert $\left]-a;a\right[$, a réel positif non nul, contenant 0.

IV. Opérations sur les limites.

1) Limite d'une somme

$\lim_{n\to+\infty}u_n=$	L	L	L	+∞		+∞
$\lim_{n\to+\infty}v_n=$	L'	+8	∞	+∞	-8	8
$\lim_{n\to+\infty} (u_n + v_n) =$						

2) Limite d'un produit

=/ ====================================									
$\lim_{n\to+\infty}u_n=$	L	L > 0	L < 0	L > 0	L < 0	+∞	8	+∞	0
$\lim_{n\to+\infty}v_n=$	L'	+∞	+∞	∞		+∞	∞	∞	-∞ ou
$\lim_{n\to+\infty} (u_n v_n) =$									

3) Limite d'un auotient

e) Elitica dall'addiction												
$\lim_{n\to+\infty}u_n=$	L	L	L > 0 ou +∞	L < 0 ou −∞	L > 0 ou +∞	L < 0 ou −∞	0	+∞	+∞	∞	∞	_∞ on +∞
$\lim_{n\to +\infty} v_n =$	<i>L'</i> ≠0	+8 ou -8	0 avec $v_n > 0$	$0 \\ avec \\ v_n > 0$	0 avec $v_n < 0$	0 avec $v_n < 0$	0	L'>0	L' < 0	L' > 0	L' < 0	+∞ ou -∞
$\lim_{n\to+\infty}\frac{u_n}{v_n}=$												

☑ Savoir-faire : Savoir déterminer une limite : Déterminer les limites suivantes :

a)
$$\lim_{n\to+\infty} \left(n-3\sqrt{n}\right)$$
 b) $\lim_{n\to+\infty} \frac{5n^2+4}{4n^2+3n}$ c) $\lim_{n\to+\infty} \frac{3n^2+n}{n+3}$ d) $\lim_{n\to+\infty} \left(\sqrt{n+2}-\sqrt{n}\right)$