Généralités sur les fonctions.

I. Notions de fonctions.

-Définition -

Soit D un ou plusieurs intervalles de \mathbb{R} . Définir une fonction f de D dans \mathbb{R} , c'est associer à chaque réel x de D un <u>unique</u> réel noté f(x). On dit que D est l'ensemble de définition de la fonction f, et on le note Df.

On peut définir une fonction par une expression, un graphique, un algorithme

Remarques:

- Une fonction est généralement désignée par l'une des lettres $f, g, h \dots$
- Au lieu d'écrire « f est la fonction qui à x associe f(x) », on peut écrire « f: $x \mapsto f(x)$ ».
- Si x et y sont deux réels tels que y=f(x), alors on dit que y est l'image de x par la fonction f, et que x est un antécédent de y par f.
- Par une fonction, un réel x ne peut avoir qu'une seule image, mais un réel y peut avoir aucun, un ou plusieurs antécédents.

☑ Savoir faire : Savoir déterminer un ensemble de définition :

Déterminer les ensembles de définition des fonctions qui ont les expressions suivantes :

f(x) = 2x + 3	$ g(x) = x^2 - 1 $	$ h(x) = \frac{3}{3x+2} $	$f(x) = \sqrt{2x+1}$

 \boxtimes Savoir faire: Savoir calculer une image ou un antécédent avec l'expression d'une fonction: Soit g la fonction définie par $g(x)=x^2-1$,

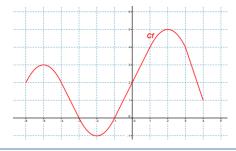
- 1) Déterminer l'image de 3 par g.
- 2) Déterminer tout les antécédents de 0 par g.

II. Courbe représentative d'une fonction.

_Définition _

Soit f une fonction d'ensemble de définition D_f . On appelle Courbe représentative de la fonction f l'ensemble C_f des points M du plan de coordonnées M(x; f(x)) avec $x \in D_f$.

On dit que y = f(x) est l'équation de la courbe C_f .



Pour tout nombre $x \in D_f$, on sait que x ne peut avoir qu'une seule image par f, donc C_f ne peut avoir qu'un seul point qui a pour abscisse x.