
Continuité.

I. Fonctions continues.

Exemples et contre-exemples :

-Définition

Soit une fonction f définie sur un intervalle I contenant un réel a.

- f est continue en a si $\lim_{x \to a} f(x) = f(a)$.
- f est continue sur I si f est continue en tout point de I.

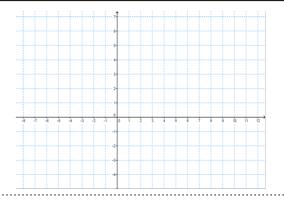
Exemples:

- Les fonctions $x \mapsto |x|$, $x \mapsto x^n$ ($n \in \mathbb{N}$) et plus généralement les fonctions polynômes sont continues sur \mathbb{R} .
- Les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto \sqrt{x}$ est continue sur $\begin{bmatrix} 0; +\infty \end{bmatrix}$.
- La fonction $x \mapsto \frac{1}{x}$ est continue sur $]-\infty;0[$ et sur $]0;+\infty[$.

Remarque:

Les flèches obliques d'un tableau de variation traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.

-Théoréme (admis)


Une fonction dérivable sur un intervalle I est continue sur cet intervalle.

☑ Savoir-faire : Savoir étudier la continuité d'une fonction.

On considère la fonction f définie sur $\mathbb R$ par

par:
$$\begin{cases} f(x) = x + 5 \text{ si } x < -2 \\ f(x) = -x \text{ si } -2 \le x \le 0 \\ f(x) = x^2 \text{ si } 0 < x \end{cases}$$

La fonction f est-elle continue sur \mathbb{R} ?

