III. Etude de la fonction logarithme népérien

Propriélé (admise) ₋ La fonction logarithme népérien est continue et dérivable sur] 0 ; $+\infty$ [et (ln(x))' = ☑ Savoir faire: Savoir dériver une fonction avec la fonction ln: Dériver les fonctions suivantes après avoir déterminer leur ensemble de définition : $f(x) = 2x^3 - x + 5ln(x)$ $\bullet \ \varrho(x) = x ln(x)$ Pour tout réel x > 0, (ln(x))' = > 0 Donc la fonction ln est sur De plus (ln(x))" = Donc la dérivée de la fonction ln est sur Donc la fonction In est sur -Propriélé La fonction logarithme népérien est strictement croissante et concave sur $]0; +\infty[$. -Propriélé (admise) - $\lim \ln x = +\infty$ et $\lim \ln x = -\infty$ Signes de (ln(x))Variations de ln Signes de ln(x)Remarque : Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite qui a pour équation Tangentes particulières - Au point d'abscisse 1, l'équation de la tangente est...... soit : - Au point d'abscisse e, l'équation de la tangente est...... soit : soit : ☑ Savoir faire: Savoir étudier une fonction avec la fonction ln: On considère la fonction f définie sur] 0; $+\infty$ [par f(x) = xln(x) - x. Etudier la fonction f. Signes de f'(x)Variations de f