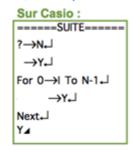
#### © Suites définies par récurrence.

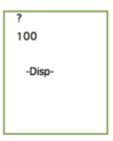
### ☑ Savoir faire : Savoir calculer un terme d'une suite définie par récurrence :

On considère la suite  $(U_n)$  définie par :  $U_0 = 3$  et pour tout n de N,  $U_{n+1} = 2$   $U_0 + 5$ .

Calcule  $U_1$ ,  $U_2$ ,  $U_3$ ,  $U_4$ ,  $U_{100}$ 

Contrairement à une suite définie par une formule explicite, on ne peut pas connaître  $U_{100}$  sans connaître  $U_{99}$ . Cependant il est possible d'écrire un algorithme sur une calculatrice programmable.


## ☑ Savoir faire : Savoir écrire un algorithme pour calculer un terme d'une suite définie par récurrence :


On considère la suite  $(U_n)$  définie par :  $U_0 = 3$  et pour tout n de N,  $U_{n+1} = 2$   $U_0 + 5$ . Calcule  $U_{100}$ 

Sur TI:

PROGRAM: SUITE
: Input "N=?",N
: →Y
: For(I,0,N-1)
: →Y
: End
: Disp Y

PrgmSUITE N=?100 Fait





Remarque : On considère la suite  $(U_n)$  définie par :  $U_0 = 1$ ,  $U_1 = 1$  et pour tout n de N,  $U_{n+2} = U_{n+1} + U_n$ .

Calcule les cinq premiers termes de cette suite.

Remarque : On considère la suite  $(V_n)$  définie par : pour tout n de  $N^*$ ,  $V_n = 1 + 2 + 3 + \dots + n$ .

# III. Représentation graphique d'une suite :

\_Définition

Dans un repère du plan, on représente une suite  $(U_n)$  par le nuage de points de coordonnées  $(n; U_n)$ .

# ☑ Savoir faire : Savoir représenter graphiquement une suite numérique :

On considère la suite  $(U_n)$  définie par : pour tout n de N,  $U_n = n^2 - 3n + 1$ . Représenter  $(U_n)$ .



|    | Α  | В          |  |
|----|----|------------|--|
| 1  | n  | Un=n²-3n+2 |  |
| 2  | 0  |            |  |
| 3  | 1  |            |  |
| 4  | 2  |            |  |
| 5  | 3  |            |  |
| 6  | 4  |            |  |
| 7  | 5  |            |  |
| 8  | 6  |            |  |
| 9  | 7  |            |  |
| 10 | 8  |            |  |
| 11 | 9  |            |  |
| 12 | 10 |            |  |
| 13 |    |            |  |