III. Etude de la fonction logarithme népérien.

1) Continuité et dérivabilité

_Propriélé .

La fonction logarithme népérien est dérivable sur] 0 ; $+\infty$ [et $[\ln(x)]' = \frac{1}{x}$

	D 4			
Démonstration :	Dem	onst	ration	

On admet que la fonction ln est dérivable sur]0 ; + ∞ [, Soit f la fonction définie sur]0 ; + ∞ [par $f(x) = e^{ln x} = x$.

Remarque:

__Propriélé

La fonction logarithme népérien est continue sur] 0 ; + ∞ [.

Démonstration:

Exemple: Dériver la fonction suivante sur l'intervalle $]0;+\infty[:f(x)=\frac{(\ln x)^2}{x}]$

2) Limites aux bornes

—Propriélé -

$$\lim_{x \to +\infty} \ln x = +\infty \quad \text{et} \quad \lim_{\substack{x \to 0 \\ y > 0}} \ln x = -\infty$$

Démonstration :

3) Courbe représentative

On dresse le tableau de variations de la fonction ln

X	
Signes de	
ln'(x)	
Variations de ln	

