	<u>Démonstration :</u>				
	4) Opérations et fond	ctions composées			
и est	une fonction dérivable sur un	n intervalle l			
	Fonction	Une primitive	Cond	itions	
	$u'u^n \qquad n \neq -1$ entier				
	$\frac{u'}{2\sqrt{u}}$				
	$\frac{u'}{u}$				
	u'e ^u				
	u(ax+b) a≠0				
✓S	avoir-faire : Savoir recherche	r des primitives :	I		
Dans chaque cas, déterminer une primitive F de la fonction f sur l'intervalle I.					l.
	a) $f(x) = x^3 - 2x \text{ sur } I = \mathbb{R}$		b) $f(x) = xe^{x^2}$	$\operatorname{sur} I = \mathbb{R}$	
	c) $f(x) = 3x^2 - \frac{3}{x^3}$ sur $I =]0; +\infty[$		d) $f(x) = \frac{x}{\sqrt{x^2 + 1}}$ sur $I = \mathbb{R}$		
	e) $f(x) = \cos(2x) - 3\sin(3x - \cos(2x))$	-1) sur $I = \mathbb{R}$	f) $f(x) = \frac{3x}{x^2 + 2}$	$\sup_{\Omega} I = \mathbb{R}$	