
3) Plans perpendiculaires

Propriélé

Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre.

- Admis -		P ₁	
☑Savoir-faire : Savoir démontrer que deu	ux plans sont perpendiculaires:		
Dans un repère orthonormé, les plans P et z $2x - 5y + 4z - 1 = 0$. Démontrer que les pla	P'ont pour équations respectives		
☑ BAC S, Pondichéry 2016			
ABCDEFGH désigne un cube de côté 1. Le point I est le milieu du segment [BF].			••••
Le point J est le milieu du segment [BC]. Le point K est le milieu du segment [CD].			
Partie A			
Dans cette partie, on ne demande aucune justification			
On admet que les droites (IJ) et (CG) sont sécantes en un point L. Construire, sur la figure fournie en annexe et en laissant apparents les traits de construction : • le point L; • l'intersection ② des plans (IJK) et (CDH);			
la section du cube par le plan (IJK). But P			
Partie B L'espace est rapporté au repère (A; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}). 1. Donner les coordonnées de A, G, I, J et K dans ce repère.			
2. a. Montrer que le vecteur \overrightarrow{AG} est normal au plan (IJK).			
 b. En déduire une équation cartésienne du plan (IJK). 3. On désigne par M un point du segment [AG] et t le réel de l'intervalle [0; 1] tel que AM = tAG. 			
a. Démontrer que $M1^2 = 3t^2 - 3t + \frac{5}{4}$.			
b. Démontrer que la distance <i>M</i> I est minimale pour le point $N\left(\frac{1}{2}; \frac{1}{2}; \frac{1}{2}\right)$.			
4. Démontrer que pour ce point $N\left(\frac{1}{2}; \frac{1}{2}; \frac{1}{2}\right)$:			
a. N appartient au plan (IJK).			
b. La droite (IN) est perpendiculaire aux droites (AG) et (BF).*			