La fonction exponentielle.

I. Définition.

Théorème

Il existe une unique fonction dérivable sur \mathbb{R} telle que: pour tout x réel, f'(x) = f(x) et f(0) = 1

Démonstration :

- Existence: on admet l'existence d'une telle fonction.
- Unicité: cette démonstration est exigible pour le bac: ROC
- Démontrons que f ne s'annule pas sur R.

Soit φ la fonction définie sur \mathbb{R} par $\varphi(x) = f(x) \times f(-x)$

 $\forall x \in \mathbb{R}, \ \varphi'(x) = \frac{\mu'(x)\nu(3c) + \nu'(3c)\mu(3c)}{2} = \frac{\mu'(x)\nu(3c) - \mu'(3c)\nu(3c)}{2} = \frac{\mu'(x)\nu(3c) - \mu'(3c)\nu(3c)}{2} = \frac{\mu'(x)\nu(3c) + \nu'(3c)\mu(3c)}{2} = \frac{\mu'(x)\nu(3c)\nu(3c) + \nu'(3c)\nu(3c)}{2} = \frac{\mu'(x)\nu(3c)\nu(3c)}{2} = \frac{\mu'(x)\nu(3c)\nu(3c$

Donc φ est une fonction <u>Constante</u> sur \mathbb{R} . Or $\varphi(0) = \frac{f(0) \times f(-0)}{2} = \frac{\Delta}{2}$, et donc, pour tout nombre réel x, $\varphi(x) = 1$ c'est-à-dire que $f(x) \times f(-x) = 1$. On en déduit que : $\forall x \in \mathbb{R}$, $f(x) \neq 0$.

Démontrons maintenant l'unicité (ROC), c'est-à-dire qu'il existe une unique fonction f dérivable sur \mathbb{R} telle que: f'=f et f(0)=1.

Pour cela, supposons qu'il existe une autre fonction g dérivable sur $\mathbb R$ telle que: g ' = g et g (0) = 1, on montre alors que g = f, c'est-à-dire que : $\forall x \in \mathbb R$, g(x) = f(x), ce qui prouvera l'unicité de la fonction.

Soit h la fonction définie par $h(x) = \frac{g(x)}{f(x)}$. h est définie et dérivable sur \mathbb{R} car g et f le sont et f ne s'annule pas sur \mathbb{R} .

De plus, on a: $\forall x \in \mathbb{R}$, $h'(x) = \frac{g'(x) \times f(x) - g(x) + g'(x)}{[f(x)]^2} = \dots$ car f' = f et g' = g

Ainsi, h est une fonction constante sur \mathbb{R} . Or, h (Ω) = $\frac{g(.\circ.)}{f(.\circ.)}$ = .1. Donc, $\forall x \in \mathbb{R}$, h(x) = Donc. $\forall x \in \mathbb{R}$, h(x) =

_Définition

On appelle fonction exponentielle l'unique fonction dérivable sur \mathbb{R} telle que: pour tout x réel, f'(x) = f(x) et f(0) = 1. On note cette fonction exp.

-Propriélé

 $\exp(0) = 1$, pour tout nombre réel x, $\exp(-x) = \frac{1}{\exp(x)}$

II. Propriétés de la fonction exp.

1) Relation fonctionnelle

-Propriété

Pour tout nombre réel x et y, $\exp(x+y) = \exp(x) \times \exp(y)$

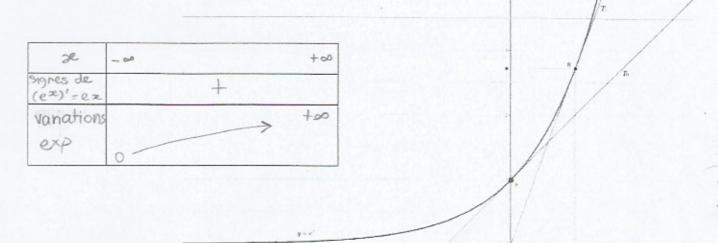
Soit y un nombre réel quelconque et fixé et soit h la fonction définie sur \mathbb{R} par $h(x) = \frac{\exp(xy)}{\exp(x)}$ 1. Justifier que h est dérivable sur \mathbb{R} et que h'est la fonction nulle. (**)	Démonstration :	ponentielle « transforme » une somme en un produit.
1. Justifier que h est dérivable surit et que h'est la fonction nulle. (x) exp(x+y) = exp(x+y) x exp(x) = e		e et fixé et soit h la fonction définie sur \mathbb{R} par $h(x) = \frac{\exp(x+y)}{(x-y)}$
$\frac{(x) \exp(x+y) + \exp(x) + (x) \exp(x) - \exp(x) \exp(x) + (x) + \exp(x)}{\exp(x+y) + \exp(x)} = O \text{ Done } k extremely of the proof of the$	 Justifier que h est dérivat 	ble sur® et que h' est la fonction nulle
2) Le nombre et est et y, et pour tout nombre réel x, h(x) = exp (y) (on pourra calculer h(0)) 3. En déduire que pour tous nombres réels x et y, exp (x+y) = exp (x) × exp (y) Cocollaites Pour tout nombre réel x et y, et pour tout entier relatif n: exp (x-y) = exp(x) Eléments de démonstration : 2) Le nombre e 1: Eléments de démonstration : 2) Le nombre e 1: Eléments de démonstration : 2) Le nombre e 2) Le nombre e 1: Eléments de démonstration : 2) Le nombre e 2) Le nombre e 2) Le nombre e 3: Eléments de démonstration : 4: Eléments de démonstration : 2) Le nombre e 2) Le nombre e 3: Eléments de démonstration : 4: Eléments de démonstration : 2) Le nombre e 3: Eléments de démonstration : 4: Eléments de démonstration : 2) Le nombre e 3: Le nombre e 4: Exp (x - y) = exp(x) Exp (x) = (exp (x)) Eléments de démonstration : 4: Eléments de démonstration : 2) Le nombre e 4: Exp (x - y) = exp(x) Exp (x) = (exp (x)) Exp (x	$h(x) = \exp(x+y) = \exp'(x)$	+4) x exp(x) - exp(x+4) x exp'(x) =
2) Le nombre e 2) Le nombre e 2) Le nombre e 2) Le nombre e 1/2 x y y = x y (x + y) = x y (x + y	exp(x+y)xexp(x)	$(\exp(x))^2$ - $\exp(x+y) \times \exp(x) = 0$ Donc hest constante
3. En déduire que pour tous nombres réels x et y , $\exp(x+y) = \exp(x) \times \exp(y)$ Cooldaixes Pour tout nombre réel x et y , et pour tout entier relatif n : $\exp(x-y) = \exp(x) \times \exp(y)$ Eléments de démonstration : 2) Le nombre e L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(.1.) = .2.$ Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx 2.318281828$ On a donc, pour tout entier relatif e : $\exp(n) = \exp(1/n) = e^{-n}$ Par extension, on convient de noter pour tout nombre réel e : e : e : (lire e : exponentielle de e : e : e : e : (lire e : exponentielle de e : e		
3. En déduire que pour tous nombres réels x et y , $\exp(x+y) = \exp(x) \times \exp(y)$ $\exp(x-y) = \exp(x) \times \exp(y)$ Pour tout nombre réel x et y , et pour tout entier relatif n : $\exp(x-y) = \exp(x)$: $\exp(x) = \exp(x)$ Eléments de démonstration : 2) Le nombre e L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(x-y) = e^x$. Avec la calculatrice, on peut obtenir une valeur approchée de e . e	h(0) = exp(0+4) = exp	nombre reel x, h (x) = exp (y) (on pourra calculer h (0))
Pour tout nombre réel x et y , et pour tout entier relatif n : $\exp(x-y) = \exp(x)$; $\exp(xx) = [\exp(x)]^n$ Eléments de démonstration : 2) Le nombre e Définition L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(.1.) = .9$. Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx 2.718281828$. On a donc, pour tout entier relatif $n : \exp(n) = \exp(1/xn) = [\exp(1/x)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , $\exp(x) = .9$. (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif $n : e^{x+y} = e^{-x} = e^{-x} = e^{-x} = e^{-x} = e^{x-y} = e^{-x} = e^{-x}$	3. En déduire que pour tous	s nombres réels r et $u = \exp(r + u) = \exp(r) \times \exp(u)$
Pour tout nombre réel x et y , et pour tout entier relatif n : $\exp(x-y) = \exp(x)$: $\exp(xx) = [\exp(x)]^n$	$\forall x = \exp(x+y) = \exp(y)$	soit exp(2e+4) = exp(x) x exp(4):
Pour tout nombre réel x et y , et pour tout entier relatif n : $\exp(x-y) = \exp(x)$. $\exp(xx) = \exp(xx)$. Avec la calculatrice, on peut obtenir une valeur approchée de e . e . e . e . Avec la calculatrice, on peut obtenir une valeur approchée de e . e . e . An expression, on convient de noter pour tout nombre réel e . $\exp(x) = \exp(xx)$. (lire e exponentielle de e exponentielle exponentielle exponentiel	Corollaires	
2) Le nombre e Définition L'image de 1 par la fonction exponentielle est notée e. On a ainsi $\exp(.1.) = .4$. Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx .2$, 718281828 . On a donc, pour tout entier relatif $n: \exp(n) - \exp(ixn) = [\exp(i)]^n - e^n$. Par extension, on convient de noter pour tout nombre réel x , $\exp(x) = .4$. (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = e^{x} \times e^y$ $e^{-x} = \frac{4}{e^{x}}$ $e^{x-y} = \frac{e^{x}}{e^{y}}$ $e^{-nx} = \frac{(e^{x})^n}{e^{x}}$ Remarque : • Ainsi, le nombre $\exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^0 = \frac{4}{e^{x}}$ et $e^1 = \frac{2}{e^{x}} = \frac{2}{e^{x}} = \frac{2}{e^{x}}$ III. Etude de la fonction $\exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^0 = \frac{4}{e^{x}}$ et $e^1 = \frac{2}{e^{x}} = \frac{2}{e^{x}} = \frac{2}{e^{x}}$ III. Etude de la fonction $\exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^0 = \frac{4}{e^{x}}$ et $e^1 = \frac{2}{e^{x}} = \frac{2}{e^{x}} = \frac{2}{e^{x}}$ III. Sens de variation de la fonction $\exp(3) = e^3$		our tout entier relatif $n : \exp(x-y) = \frac{\exp(x)}{\exp(y)}$; $\exp(nx) = [\exp(x)]^n$
2) Le nombre e Définition L'image de 1 par la fonction exponentielle est notée e. On a ainsi exp (.1.) = .e Avec la calculatrice, on peut obtenir une valeur approchée de e. e ~ .2, 718 281828. On a donc, pour tout entier relatif n: exp (n) = exp (1 × n) = [exp (1)] * e * . Par extension, on convient de noter pour tout nombre réel x, exp (x) = .e (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n: e * +y = e * x e y	Eléments de démonstration :	
2) Le nombre e Définition L'image de 1 par la fonction exponentielle est notée e. On a ainsi exp (.1.) = .e Avec la calculatrice, on peut obtenir une valeur approchée de e. e ~ .2, 718 281828. On a donc, pour tout entier relatif n: exp (n) = exp (1 × n) = [exp (1)] * e * . Par extension, on convient de noter pour tout nombre réel x, exp (x) = .e (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n: e * +y = e * x e y		
L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(.1.) = .$. Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx 2.718281828$. On a donc, pour tout entier relatif e : $\exp(n) = \exp(1 \times n) = [\exp(1)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , $\exp(x) = .$. ((lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = e^{x} \times e^y = e^{-x} = e^{x-y} = e^{x-y} = e^{x-y} = e^{x} = e^{x-y} = e^{x}$ Remarque : • Ainsi, le nombre $\exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^0 = 4$. et $e^1 = 2.718 \times e$ III. Etude de la fonction $\exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a par exemple, $e^0 = 4$. et $e^1 = 2.718 \times e$		
L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(.1.) = .$. Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx 2.718281828$. On a donc, pour tout entier relatif $n : \exp(n) = \exp(1 \times n) = [\exp(1)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , $\exp(x) = .$. ((lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = \underbrace{e^x \times e^y}_{x} = e^{-x} = \underbrace{e^x - y}_{x} = \underbrace{e^x}_{x} = \underbrace{e^x - y}_{x} = \underbrace{e^x}_{x} =$		
L'image de 1 par la fonction exponentielle est notée e . On a ainsi $\exp(.1.) = .$ e . Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx2, 718281828$ On a donc, pour tout entier relatif e :	2) [Le nombre e
Avec la calculatrice, on peut obtenir une valeur approchée de e . $e \approx 2$, 718281828 On a donc, pour tout entier relatif n : exp $(n) = exp$ $(1 \times n) = [exp(1)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , exp $(x) = 0$ (lire e exponentielle de e e e ou e exposant e	Définition	
On a donc, pour tout entier relatif $n : exp(n) = exp(1 \times n) = [exp(1)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , $exp(x) =$ (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = \underbrace{e^x \times e^y}_{x=1} e^{-x} = \underbrace{e^x \times e^y}_{x=1} e^{-x} = \underbrace{e^x \times e^y}_{x=1} = e^x \times e^y$	L'image de 1 par la fonction expo	onentielle est notée e. On a ainsi $\exp(.1) = .4$.
On a donc, pour tout entier relatif $n : exp(n) = exp(1 \times n) = [exp(1)]^n = e^n$. Par extension, on convient de noter pour tout nombre réel x , $exp(x) =$ (lire « exponentielle de x » ou « e exposant x ») Propriété Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = \underbrace{e^x \times e^y}_{x=1} e^{-x} = \underbrace{e^x \times e^y}_{x=1} e^{-x} = \underbrace{e^x \times e^y}_{x=1} = e^x \times e^y$	Avec la calculatrice, on peut obter	nir une valeur approchée de e. e ≈ 2,718281828
Ou « e exposant x ») Propriélé Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = e^{x} \times e^{y}$ $e^{-x} = e^{x-y} = e^{x}$ $e^{x-y} = e^{x}$ Remarque : • Ainsi, le nombre $exp(3) = e^{3}$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^{0} = 4$ et $e^{1} = 2.718$. III. Etude de la fonction exp. 1. Sens de variation de la fonction exp	On a donc, pour tout entier relatif	$n: exp(n) = exp(1 \times n) = [exp(1)]^n = e^n$
Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = e^{x} \times e^{y} \qquad e^{-x} = \frac{1}{e^{x}} \qquad e^{x-y} = \frac{e^{x}}{e^{y}} \qquad e^{nx} = \frac{1}{e^{x}} \qquad e^{nx} = \frac{1}{e^{nx}} $		ter pour tout nombre réel x , $\exp(x) = . \ \ \ .$ (lire « exponentielle de x »
Avec cette notation, les propriétés précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n : $e^{x+y} = e^{x} \times e^{y}$ $e^{-x} = e^{x-y} = e^{x-y}$ $e^{x-y} = e^{x-y}$ $e^{x+y} = e^{x} \times e^{y}$ $e^{-x} = e^{x} \times e^{y}$ $e^{x} = e^{x} \times e^{y}$ $e^{-x} = e^{x} \times e^{y}$		
$e^{x+y} = e^x \times e^y$ $e^{-x} = e^x \times e^y = e^x$ $e^{x-y} = e^x \times e^y = e^x \times e^y$ $e^{nx} = (e^x)^n$ Remarque: • Ainsi, le nombre $exp(3) = e^3$ est bien égal à $e \times e \times e$ • On a, par exemple, $e^0 = 4$ et $e^1 = 2.718 = 0$ III. Etude de la fonction exp. 1. Sens de variation de la fonction exp	3	
Remarque: • Ainsi, le nombre exp(3) = e³ est bien égal à e × e × e • On a, par exemple, e⁰ =	Avec cette notation, les propriété	es précédentes s'écrivent : Pour tous réels x et y et pour tout entier relatif n :
Ainsi, le nombre exp(3) = e 3 est bien égal à e × e × e On a, par exemple, e 0 =	$e^{x+y} = e^{x} \times e^{y}$ $e^{-x} = \frac{1}{e^{x}}$	$e^{x-y} = \frac{e^x}{e^y} \qquad e^{nx} = (e^x)^n$
On a, par exemple, e 0 =	Remarque :	
1. <u>Sens de variation de la fonction exp</u> ———————————————————————————————————		
Propriété	III. Etude	de la fonction exp.
,	Sens de variation	n de la fonction exp
,	Propriété	
A THE THE PARTY OF	,	ement necitive our ID . Www. ID . Www.

Montrons, à l'aide d'un raisonnement par l'absurde que la fidire que : pour tout réel x , $e^x > 0$. Pour cela, on suppose que absurde)				
Or, on sait que, pour tout réel x , $e^x \neq 0$. Ainsi, on suppose que Or, la fonction exponentielle est dérivable donc continue se Le théorème des valeurs intermédiaires permet d'affirmer de Ce qui est contradictoire avec la propriété (démontrée préconnent déduit que notre supposition (absurde): Il existe un « négation » est vraie ; c'est-à-dire que : $\frac{1}{2}$	sur R et que : il ex édemme réel a tel	iste au moins u nt): pour tout re que e ^s < 0 est	n réel α tel que éel x , $e^x \neq 0$. fausse, et donc	que sa
a fonction exponentielle est strictement croissante sur R.				
Démonstration :	-			
La fonction exponentielle est dérivable sur \mathbb{R} et $\exp' = \exp$. Conction exponentielle est strictement croissante sur \mathbb{R} .	Or, pour to	out nombre réel	x, exp $(x) > 0$, o	ionc la
conséquences :				
$e^a = e^b \Leftrightarrow a = b$ et $e^a < e^b \Leftrightarrow a < b$	20	- O*		+ 00
En particulier: $e^x \ge 1 \Leftrightarrow x \ge 0$	exp		7	
2. Limites en $+\infty$ et en $-\infty$ de la fonction exp)			
Propriété				
$\lim_{x\to+\infty} e^x = +\infty$			Mari Line	
Démonstration : (exigible BAC ROC) Montrons que, pour tout nombre réel x , $e^x > x$. On pour comparaison de limites. Soit f la fonction définie sur \mathbb{R} par : $f(x) = e^x - x$. Etudier les v				
$f(x) = e^{x} - x$ $f'(x) = e^{x} - 1$	2	5 -0	0	+00
$P'(x) > 0$ Donc, $\forall x P(x) > 0$ soit $e^x - x$ $e^x - 1 > 0$ Donc $e^x > x$ $\forall x$	Jack.	-	+	
e2>0°	8 Ag	e V	1 1	
20				
En déduire que $\lim_{x\to +\infty} e^x = +\infty$. $\lim_{x\to +\infty} x = +\infty$ et $\forall x = e^x > x$ donc d'a $\lim_{x\to +\infty} e^x = +\infty$	près le	théoreme «	de comparai	son,
Propriété				
$\lim_{x\to-\infty}\mathbf{e}^x=0$				
Démonstration : (exigible BAC ROC) Or, quand x tend vers $-\infty$, $-x$ tend vers $+\infty$ donc par comp	osition d	e limites, lim _{x→} .	$-\infty e^{-x} = +\infty$.	
lim x > - 00 e = lim x > + 00 e = + 00 lim x >	-0 e2	= im z > - 10"	$\frac{1}{\rho} = 0$	
Conséquence graphique : la droite d'équation y				
56		1: 0		
	00 0		0.10	boles

all of your base one belong to

$$\lim_{x \to +\infty} e^{x} = +\infty$$

$$\lim_{x \to +\infty} e^{x} = 0$$


$$\lim_{x \to -\infty} e^{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^{x} - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty$$

3. Conclusion

Déterminons les équations réduites des tangentes To et To aux points A et B d'abscisse 0 et 1 :

To: $y = e^{\circ}(3e - 0) + e^{\circ}$ Ti: $y = e^{\circ}(x - 1) + e^{\circ}$ = x + 1 = $e^{\circ}x - e + e$ = $e^{\circ}x - e + e$

IV. Complements sur la fonction exp.

a. Des limites à connaître :

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

Démonstration : on rappelle que, si f est une fonction dérivable en a alors $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \frac{f'(a)}{h}$ $\frac{f'(a)}{h} = \frac{f'(a)}{h} = \frac{f'(a)}{h}$

Propriété croissance comparée de x et ex

$$\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$$
 et $\lim_{x\to-\infty} xe^x = 0$.

Remarque : on dit qu' « à l'infini, l'exponentielle l'emporte sur x. »
Démonstration :

b. Fonctions $x \to e^{u(x)}$:

Notation : u désigne une fonction définie sur un intervalle I. On note e^u la fonction $x \to e^{u(x)}$.

Propriété

Si u est une fonction dérivable sur un intervalle I, alors la fonction $e^u: x \to \exp[u(x)]$ est dérivable sur I et

$$(e^u)' = u'e^u$$

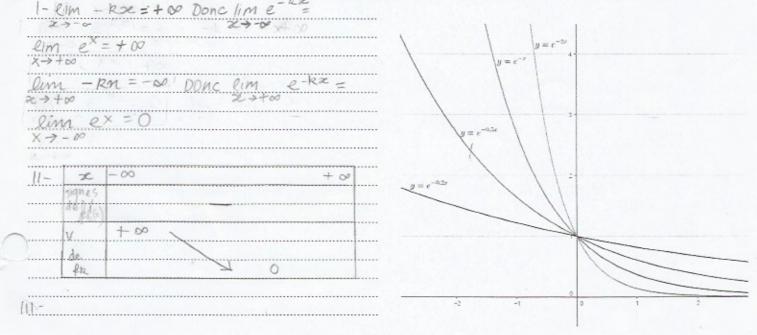
Exemples : calculons les fonctions dérivées des fonctions suivantes :

4) $f(x) = e^{x^2 + x + 1}$	2) $f(x) = e^{2x+1}$ 3) $f(x) = e$	$\frac{1}{x}$ pour x réel non-nul.
1) f(x)=ex2+x+1	2) f(x)=e2x+1	3) f(xe)= e==
donc f=e" avec	done fee avec	donc f=e" avec u(x)=1
u(x) = 22+.2e+1	u(x)=22e+1 et	et l'= u'en avec de
donc f'= u'en	f'=wer avec	11/(2e) = -1 donc
avec u(x) = >x+1	2 u'(x)=2	2C2
Donc f(x)= (22+1)ex	= +ze+1 donc P/(x) =	f'(ze) = - e =
	2 e2x+1	22

Propriété

Limites de la fonction e"

a désigne un nombre réel, + ∞ ou – ∞. / désigne un nombre réel.


Si
$$\lim_{x\to a} u(x) = -\infty$$
 alors $\lim_{x\to a} e^{u(x)} = \lim_{x\to a} u(x) = -\infty$ lime $u(x) = -\infty$

Si
$$\lim_{x\to a} u(x) = I$$
 alors $\lim_{x\to a} e^{u(x)} = \lim_{x\to a} u(x) = l$ $\lim_{x\to a} u(x) = +\infty$ alors $\lim_{x\to a} e^{u(x)} = \lim_{x\to a} u(x) = -\infty$ $\lim_{x\to a} u(x) = -\infty$

Exemples-types:

Exemple 1 : Les fonctions f_k définies sur \mathbb{R} par $f_k(x) = e^{-kx}$ où k est un nombre réel strictement positif.

- i. Calculer les limites de f_k en $-\infty$ et en $+\infty$.
- ii. Dresser le tableau de variations de la fonction f_k
- iii. Etudier la position relative des courbes C_k et $C_{k'}$ où k et k' sont deux réels tels que k < k'

111- k'> R Ck' au dessus de Ck sur J-0;0 [CR' au dessous de Ck sur 30; +00 T Ck' et Ck se coupe en (0;1) VR fr(0) = e-k×0= e° = 1 (0,1) € CK VR fr(x)>fr: (x) p-ksese-R'ae -kæ> -k'æ J k2 < k'x 200 RCRI 20 kx < k/2 20 R20 k/20 f(2e)= 2ee=2

	Exemple 2 : Soit f la fonction définie sur \mathbb{R}	$par f(x) = xe^{-2}.$
	a) Etudier les limites de f à l'infini.	" ex
0	b) Calculer la dérivée de la fonction	n f.
0	c) Dresser le tableau de variation o	
1	d) Tracer la courbe représentative	
)	**************************************	
	limz = - 00 2 = - 00 · Cim x = - 00 = = +00:	-2 -1 0 1 2 3 4 5 6 7 8
	lim x >-00 8= = limx >+0 ex=+00	/-1
	Danc Jim = - m lest 00	
	Notice 2012 - 20 1(2) - 0 3	= 0 - 2 2
	im x >+00 f(3e)= lim x>+00 (-2) x (=>) x e==	- V Car
	$\lim_{x \to -\infty} xe^x = 0$ et $\lim_{x \to +\infty} \frac{1}{x} = -\infty$	
	SEE BEHIND -	
- 7		
	☑ BAC S, Liban mai 2015	
EXER	CICE 3 3 points	ALLON HAY AND
On co	onsidère la courbe % d'équation y = e ^x , tracée ci-dessous.	
	4 /	
	3	
	2 - /	
	1	
	-5 -4 -3 -2 -1 1 2	
	-1-	
in.	2 1	
Pour	tout réel m strictement positif, on note \mathcal{D}_m la droite d'équation $y = mx$.	
- 1	. Dans cette question, on choisit m = e.	
	Démontrer que la droite \mathcal{D}_z , d'équation $y=ex$, est tangente à la courbe \mathscr{C} en	
-	son point d'abscisse 1. Conjecturer, selon les valeurs prises par le réel strictement positif m. le nombre	
-	de points d'intersection de la courbe 's' et de la droite Gm.	
3	. Démontrer cette conjecture.*	
	7	
	☑ BAC S. Antilles Guyane Juin 2014	
	CICE 2 6 points	
	mun à tous les candidats	
On co	unsidère la fonction f définite et dérivable sur l'ensemble $\mathbb R$ des nombres réels	
pai		
	$f(x) = x + 1 + \frac{x}{e^x}.$	
On p	ote 'é sa courbe représentative dans un repère orthonormé [O, 1/2, 7/2].	
Parti		
1	. Soit g la fonction définte et dérivable sur l'ensemble R par	
	$g(x) = 1 - x + e^x.$	
	Dresser, en le jusufiant, le tableau donnant les variations de la fonction g	
	sur R (les limites de g aux bornes de son ensemble de définition ne sont pes attenducs).	
	En dédutre le signe de g(x).	
2	. Déserminer la limite de f en -co puis la limite de f en -co.	
	On appelle f la dérivée de la fonction f sur R.	
	Démontrer que, pour sout réel x,	
	Flat = a ² at m	
	$f'(x) = e^{-x} g(x).$	
	 En déduire le tableau de variation de la fonction f sur R. Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur R. 	
3	Démontrer que -1 < a < 0.	
- 6	 a. Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe 	
	'€ au point d'abscisse 6.	
	b. Étudier la position relative de la courbe 6 et de la droite 7.	***************************************