Suites bornées et convergence monotone.

I. Suites majorées, minorées, bornées.

Définition

- La suite (u_n) est majorée s'il existe un réel M tel que pour tout entier n∈ N, u_n ≤ M.
- La suite (u_n) est minorée s'il existe un réel m tel que pour tout entier n∈ N, u_n ≥ m.
- La suite (u_n) est bornée si elle est à la fois majorée et minorée.

Exemples:

- Les suites de terme général cos n ou (-1) sont . bornées . entre (-1) et 4
- La suite de terme général n² est minorée par 0...

☑ Savoir-faire : Savoir déterminer la limite d'une suite géométrique :

On considere la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$. Démontrer par récurrence que la suite (u_n) est majorée par 3. Initialization ($u_0 = 2 < 3$) of range est vrois.

Hérédelaire ou suppose, que 3 < 4 (4 < 3) mondrance ($u_n > 4$). $\frac{1}{3} \le \frac{1}{3} \le \frac{1}{3}$

II. Convergence des suites monotones.

Propriété

Soit (u_n) une suite croissante définie sur N. Si lim u_n = L alors la suite (u_n) est majorée par L.

Démonstration par l'absurde :

On suppose que (Un) n'est pas majorée par L alors I no /Uno > L
Posons I = I L-1; Uno [L & I (Un) Croissant 7n>no donc Un & I
Ce qui n'est pas possible car lim = L

Théorème de convergence monotone - Admis--

- Si une suite croissante of majorée alors elle est convergente.
- Si une suite décroissante et minorée alors elle est convergente.

Remarque:

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite.

Dans l'exemple ci-contre, la suite décroissante est minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2.

On considere la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$.

Démontrer que la suite (u.) est convergente et calculer sa limite.

Initialisation: U0 = 2 U1 = 8 donc U1 > U0

Hère = on suppose que UR+1>u³k montrons que UR+2> UR+1

1 UR+1+2> 1 UR+2 la prop. est héréditaire donc (Un) est croissante.

Or (Un) est majoré par 3 (voir p 19) donc d'après le th de convergence monotone (Un) est convergente.	
On note lim Un= L Un+1=1Un+2	Donc 2 L=2 Donc L=3
L = 1 L + 2 Corollaire	Donc lim = 3 n→ +∞
 Si une suite croissante est non majorée alors Si une suite décroissante est non minorée alors 	
Démonstration: si (Un) 1 non mayor On pose A (Un) n'est pas mayorée 1 (Un) est croissante donc ∀n ≥ No U Donc ∀n ≥ No Un ∈ JA; +∞□ Donc lim Un = +∞ n++∞	oré alors nitaun = +∞ Sonc I no / Uno >A In>A
☑ Antilles Guyane Juin 2014 :	
Soit la suite numérique (u_n) définie sur l'ensamble des entiers maturels \mathbb{N} par $\begin{cases} u_0 &=& 2\\ \text{ et pour tous entier naturel } u,u_{m+1} &=& \frac{1}{5}u_m + 3 \times 0, 5^m \end{cases}$ L. u_0 . Becopier et, à l'aide de la calcularrice, compléter le tableau des valeurs de la suite (u_0) approchées à 10^{-3} près :	
# 0 1 2 3 6 5 6 7 8	
 b. D'après ce tableou, énoncer une conjecture sur le sens de variation de la suite (m_e). 2. a. Démontrer, par récurrence, que pour sous entier naturel n non nui on a µ_a ≥ 15/4 × 0.5^a. 	
 b. En déduire que, pour tout entier naturel n non mai, u_{n+1} = u_n ≤ n. c. Démontrer que la suite (u_n) así convergente. 3. On se propose, dises cette question de déterminer la limite de la suite (u_n). Soit (v_n) la suite définie sur l'e par v_n = u_n = 10 × 0,5°. 	
 a. Démontrer que la suite (σ_n) est une suite géométrique de raison ¹/₅. Or précisera le premier terme de la suite (σ_n). b. En dédufre, que pour tout entier naturel σ_n. μ_n = -0 × (¹/₅)ⁿ + 10 × 0.5ⁿ. 	
 c. Déterminer la limite de la suite (u_n) 4. Recopier et compléter les lignes (1), (2) les (3) de l'algorithme suivant, aftr qu'il affiche la plus petite valeur de n telle que u_π ≤ 0.01. 	
Entrée: re et a sont des nombres Initialisation: a prend la valeur 0 a prend la valeur 2 Traitement: Tant que (1) a prend la valeur [2] a prend la valeur [3] Fin Tant que	
Sortle: Afficher a	