### Généralités sur les suites.





Leonardo Pisano dit Fibonacci (1175-1250) mathématicien italien. Dans son ouvrage « Liber Abaci » il développe la première approche de la notion de suites numériques.



## I. Définition.

Voici un problème posé en 1202 par **Leonardo Pisano** dit **Fibonacci**.

Un fermier achète un couple de bébés lapins. Après 2 mois, ce couple commence à se reproduire et donne naissance à un nouveau couple de lapins qui au bout de 2 mois, se reproduira à son tour. Chaque couple donnant naissance à un nouveau couple tous les mois, lesquels commencent à se reproduire au bout de 2 mois.

| Nombre de mois | Bébés                              | ados                    | adultes            | total       | On crée ainsi une suite de nombres : {,                      |
|----------------|------------------------------------|-------------------------|--------------------|-------------|--------------------------------------------------------------|
| 0              | 1                                  | 0                       | 0                  | 1           | indexe chacun des nombres de la liste. On Note $u_0$         |
|                |                                    |                         |                    |             | le nombre de lapins le premier mois, u <sub>1</sub> celui le |
|                |                                    |                         |                    |             | deuxième mois, etc On a donc :                               |
|                |                                    |                         |                    |             |                                                              |
|                |                                    |                         |                    |             |                                                              |
| On note (un    | ) l'ensemb                         | le des non              | nbres de ce        | tte suite d | e nombres. On dit que $u_5$ est le                           |
|                |                                    |                         |                    | pas         |                                                              |
| On a ainsi d   |                                    |                         | •                  |             |                                                              |
| On peut lui    | associer u                         | ne <b>fonctio</b>       | <b>n</b> définie d | e N dans    | $\mathbb{R} \ par: u:n \to u(n)=u_n$                         |
| Définition : I | Ina suita n                        | umériaue                | (11 ) est line     | liste ordo  | nnée de nombres réels telle qu'à tout entier $n$ on associe  |
|                |                                    | -                       |                    |             | rme de rang $n$ de cette suite (ou d'indice $n$ ).           |
| •              |                                    |                         |                    |             |                                                              |
| Attention, n   | e pas conf                         | ondre $(u_n)$           | qui est            |             |                                                              |
|                |                                    | et un                   | qui est            |             |                                                              |
| п.Б.           | al: <b>cc</b> 4                    |                         | مامامام            |             | allows a society                                             |
| II. De         | <u>eux aiπe</u>                    | rents mo                | <u>aes de c</u>    | reation     | <u>d'une suite :</u>                                         |
| © <u>S</u>     | uites dé                           | finies pa               | r une for          | mule ex     | plicite: $u_n = f(n)$ .                                      |
| ☑ Savoir-f     | aire : Sav                         | oir calcule             | er un terme        | e d'une su  | uite définie en fonction de n :                              |
| On conside     | ère la suit                        | e (u <sub>n</sub> ) déi | finie par : μ      | oour tout   | $n \text{ de } N, \ u_n = 2n^2 + 3.$                         |
| Calcule u₀     | , <i>u</i> 1, <i>u</i> 2, <i>i</i> | u5, U100                |                    |             |                                                              |
|                |                                    |                         |                    |             |                                                              |
|                |                                    |                         |                    |             |                                                              |
|                |                                    |                         |                    |             |                                                              |
|                |                                    |                         | avec les il        |             |                                                              |
|                |                                    | <u>-</u>                |                    |             | $u_n + 1$ , - $u_{n+1} + 3$ .                                |
| ,              |                                    |                         | . , ,              | ,           |                                                              |
|                |                                    |                         |                    |             |                                                              |
|                |                                    |                         |                    |             |                                                              |

 $\odot$  Suites définies par récurrence:  $u_{n+1} = f(u_n)$ .

| ☑ Savoir-faire : Savoir calculer un terme d'une suite définie par récurrer | ice : |
|----------------------------------------------------------------------------|-------|
|----------------------------------------------------------------------------|-------|

On considère la suite  $(u_n)$  définie par :  $u_0 = 3$  et pour tout n de N,  $u_{n+1} = 2$   $u_n + 5$ .

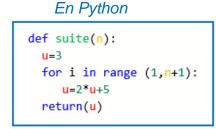
Calcule u1, u2, u3, u4, u100

Contrairement à une suite définie par une formule explicite, on ne peut pas connaître u<sub>100</sub> sans connaître ......... Cependant il est possible d'écrire un algorithme.

# ☑ Savoir-faire : Savoir écrire un algorithme pour calculer un terme d'une suite définie par récurrence :

On considère la suite  $(u_n)$  définie par :  $u_0 = 3$  et pour tout n de N.  $u_{n+1} = 2$   $u_n + 5$ . Calcule  $u_{100}$  En langage naturel En Python

## 



| • | <br> | • | <br> | <br>• | • | • | <br> | <br> |      |      |  | • | • | • | • | • | • | • | • | • | • | • | • | • |  | • | • | • | • | • | • | • |  | • |  | • |  | • | • • | • | • | • | • | • |  | • | • | • | • | • | • |
|---|------|---|------|-------|---|---|------|------|------|------|--|---|---|---|---|---|---|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|---|--|---|--|---|-----|---|---|---|---|---|--|---|---|---|---|---|---|
|   | <br> |   | <br> |       |   |   |      |      |      |      |  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |  |   |  |   |     |   |   |   |   |   |  |   |   |   |   |   |   |
|   | <br> |   | <br> |       |   |   | <br> | <br> | <br> | <br> |  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |  |   |  |   |     |   |   |   |   |   |  |   |   |   |   |   |   |
|   | <br> |   | <br> |       |   |   | <br> | <br> |      |      |  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |  |   |  |   |     |   |   |   |   |   |  |   |   |   |   |   |   |
|   | <br> |   | <br> |       |   |   |      |      |      |      |  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |  |   |  |   |     |   |   |   |   |   |  |   |   |   |   |   |   |
|   |      |   |      |       |   |   |      |      |      |      |  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |  |   |  |   |     |   |   |   |   |   |  |   |   |   |   |   |   |

Remarque : On considère la suite  $(u_n)$  définie par :  $u_0 = 1$ ,  $u_1 = 1$  et pour tout n de N,  $u_{n+2} = u_{n+1} + u_n$ . Calcule les cinq premiers termes de cette suite.

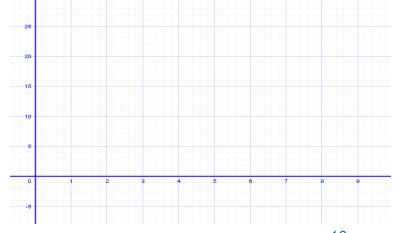
Lorsqu'on génère une suite par une relation de récurrence, chaque terme de la suite s'obtient à partir d'un ou plusieurs des termes précédents.

#### III. Représentation graphique d'une suite :

Définition : Dans un repère du plan, on représente une suite  $(u_n)$  par le nuage de points de coordonnées  $(n; u_n)$ .

#### ☑ Savoir-faire : Savoir représenter graphiquement une suite numérique :

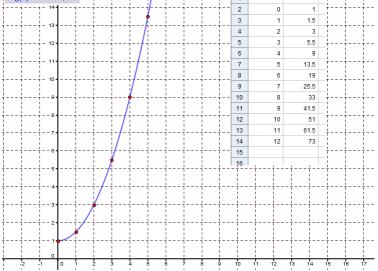
On considère la suite  $(u_n)$  définie par :  $\forall n \in \mathbb{N}, \ u_n = \frac{n^2}{2} - 3$ . Représenter la suite  $(u_n)$ .



|    |    |   | _      |               |
|----|----|---|--------|---------------|
|    | Α  | В |        |               |
| 1  | n  |   | L      |               |
| 2  | 0  | - | $\leq$ | $\overline{}$ |
| 3  | 1  |   |        | -             |
| 4  | 2  |   |        |               |
| 5  | 3  |   |        |               |
| 6  | 4  |   |        |               |
| 7  | 5  |   |        |               |
| 8  | 6  |   |        |               |
| 9  | 7  |   |        |               |
| 10 | 8  |   |        |               |
| 11 | 9  |   |        |               |
| 12 | 10 |   |        |               |
| 13 |    |   |        |               |

## IV. Sens de variation d'une suite numérique.

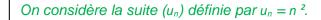
| On considère la suite $(u_n)$ définie par : $\forall n \in \mathbb{N}$ , $u_n = \frac{n^2}{2} - 3$ . En observant sa représentation graphique on remarque que $u_0 \dots u_1; u_1 \dots u_2; u_2 \dots u_3; u_3 \dots u_4$ . On a l'impression que $\forall n \in \mathbb{N}$ , $u_{n+1}, \dots, u_n$ . Peut-on le prouver ?        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                     |
| Définition : On dit qu'une suite $(u_n)$ définie sur N est :  ♦ <u>croissante</u> si et seulement si pour tout entier naturel n, $u_{n+1}$ $u_n$ .                                                                                                                                                                                  |
| <ul> <li>◆ <u>décroissante</u> si et seulement si pour tout entier naturel n, u<sub>n+1</sub> u<sub>n</sub>.</li> </ul>                                                                                                                                                                                                             |
| • constante si et seulement si pour tout entier naturel n, $u_{n+1}$ $u_n$ .                                                                                                                                                                                                                                                        |
| ☑ Savoir-faire : Savoir étudier les variations d'une suite :  Pour tout $n$ de $\mathbb{N}$ , on donne la suite $(u_n)$ définie par : $un = \frac{1}{n+1}$ . Étudie les variations de $(u_n)$ .  Démontrer que la suite $(u_n)$ est croissante à partir d'un certain rang.  Conjecture sur les premiers termes :  Démonstration :   |
| Remarque : Pour certaine suites l'inégalité <i>u</i> <sub>n+1</sub> > <i>u</i> <sub>n</sub> , n'est ∨raie que pour n≥p, on dit que                                                                                                                                                                                                  |
| $\odot$ Suites et fonctions : $u_n = f(n)$ .                                                                                                                                                                                                                                                                                        |
| Définition : Soit une fonction $f$ définie sur $[0; +\infty[$ et une suite numérique $(u_n)$ définie sur $N$ par $u_n = f(n)$ .  • Si la fonction $f$ est croissante sur $[0; +\infty[$ alors la suite $(u_n)$ est décroissante.  • Si la fonction $f$ est décroissante sur $[0; +\infty[$ alors la suite $(u_n)$ est décroissante. |

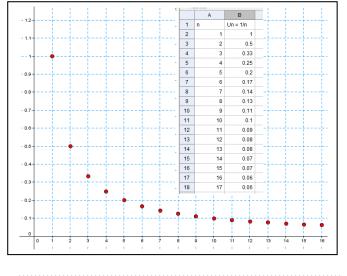


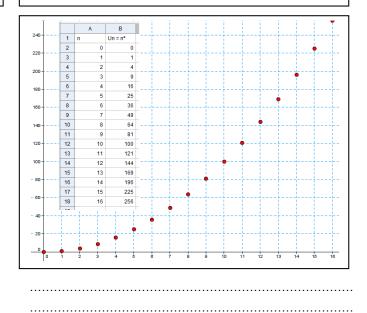
#### IV. Notion de limite d'une suite.

Etudier la limite d'une suite  $(u_n)$ , c'est se demander ce que deviennent les nombres  $u_n$  lorsque n devient de plus en plus grand.

On considère la suite  $(u_n)$  définie par  $u_n = \frac{1}{n}$ .  $\forall n \in \mathbb{N}^*$ .







.....

Définition : On dit qu'une suite  $(u_n)$  converge vers un nombre L si, à partir d'un certain rang, les termes sont aussi proches qu'on le souhaite du nombre L. On le note  $\lim_{n\to+\infty} u_n = L$ .

**Définition**: On dit qu'une suite  $(u_n)$  à pour limite  $+\infty$ , si, à partir d'un certain rang, les termes sont plus grands que n'importe quel nombre qu'on a choisi. On le note  $\lim_{n\to+\infty} u_n = +\infty$ .

Remarque : Certaines suites n'ont pas de limites : .....

#### ✓ Savoir-faire: Savoir utiliser un algorithme Seuil:

On considère la suite  $(u_n)$  définie par  $u_0 = 2$  et  $\forall n \in \mathbb{N}$ ,  $u_{n+1} = 4$   $u_n$ . Cette suite est croissante et admet pour limite....... Ecrire un algorithme permettant de préciser le rang á partir duquel  $u_n$  est supérieure à S.

```
def seuil(s):
    n=0
    u=2
    while u<s:
        n=n+1
        u=4*n
    return(n)</pre>
```