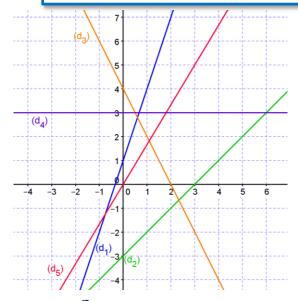

$\overline{\text{IV}}$. Fonctions affines :

	elle			3			3			
т з'ару	pelle			el	t p s'appel	le				
© Exem	yples :									
@	La fonction f	qui a po	ur expres	sion $f(x)$	$=3x + 2 \dots$					
Le coeff	licient directeur	est m =		. et l'ordi	onnée à l'o	rigine est	<i>p</i> =			
@)La fonction g	qui a po	эиг ехрге	ssion g(x	$(x) = \frac{-5x - 7}{2} \dots$					
Le coeff	licient directeur	est m =		. et l'ordi	onnée à l'o	rigine est	<i>p</i> =			
@) La fonction h	qui a po	эиг ехрге	ssion h(x	;) =		n'est pas	une fonc	rtion affin	ve.
@	La fonction k	qui a po	эиг ехрге	usion $k(x)$) = - x					
Le coeff	licient directeur	est m =		. et l'ordi	onnée à l'o	rigine est	<i>p</i> =			
	b)	Renzé	senlalio	n graphi	ane.					
5 5 5 5 5 8 8 9 9 1 9 1 9	.: On considère	J		0 0		f(x) = 2	2x – 1. C	emplète le	e tableau	de valeurs.
J	⊿ A	В	С	D	E	F	G	Н	1	J
	1	-4	-3	-2	-1	0	1	2	3	4
	$_{2} f(x) = 2x-1$!								
	On considèr	e la fonc	ction g qu	ii a comm	re expressi	on $g(x) =$	= -x + 3.	Complète	le tablea	u de valeurs.
	x	-4	-3	-2	-1	0	1	2	3	4
	g(x) = -x + 3									
		ans le r	uepère ci-	contre. E	In verl				10	
les po	rints obtenus d				2 0	.++			9	
	rints obtenus d ourbe représent		f, en ro	uge ceux	de la			44	8	
de la c	_		f, en ro	uge ceux	de la			 	7	
de la c e représ	ourbe représent entative de g.		f, en ro	uge ceux	de la				7*	
de la c e représ	ourbe représent entative de g.		f, en 10	uge ceux	de la				8	
de la c e représ	ourbe représent entative de g.		f, en 10	uge ceux	de la				8	
de la c e représ	ourbe représent entative de g.		f, en 10	uge ceux	de la	-10 -0 -4	7 -0 -5	4 3 2 1	7	4 5 0 7 8
de la c	ourbe représent entative de g.		f, en 10	uge ceux	de la	-10 0	-7 -0 -5	3 2 1	8	4 5 6 7 6
de la c e représ	ourbe représent entative de g.		f, en 10	uge ceux	de la	-10 -50	7 -8 -5	4 3 2 1	8	4 5 6 7 8
de la c représ	ourbe représent entative de g.		f, en 10	uge ceux	de la	-10 -0 -1	7 8 5	4 3 2 1	8	4 5 6 7 8
de la c représ remarqu	ourbe représent entative de g. ve que :	alive de	f, en 10	uge ceux	de la	-10 -9 -4	-7 -5 -5	4-3-2-1	7	4 6 6 7 8
de la ci e représ uemarqui Propr	ourbe représent entative de g. ue que :	alive de		uge ceux	de la	-10 -50 -	7 -6 -5	4 3 2 -1	8	4 5 6 7 6
de la c e représ remarqu Propr	ourbe représent entative de g. ve que :)		uge ceux	de la	-10 -0 -1	1.7.8.5	4 3 2 1	8	4 5 6 7 8

Remarque : On peut vérifier que la représentation graphique d'une fonction affine est correcte.

 \odot Exemple: Voici la représentation graphique de la fonction f qui a pour expression f(x) = 2x - 3.

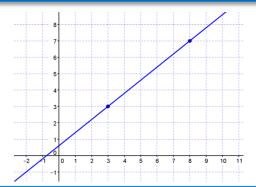


Pour tout nombre a :

On peut lire le coefficient directeur sur la représentation graphique.

Savoir-faire

Retrouve les expressions des fonctions affines qui ont été représentées graphiquement ci-dessous.


- © La droite (d_1) représente la fonction affine f_1 qui a pour expression $f_1(x) = \dots$
- © La droite (d2) représente la fonction affine f^2 qui a pour expression $f^2(x) = \dots$
- © La droite (d3) représente la fonction affine f_3 qui a pour expression $f_3(x) = \dots$
- © La droite (d4) représente la fonction affine f_4 qui a pour expression $f_4(x) = \dots$
- © La droite (d5) représente la fonction affine f_5 qui a pour expression $f_5(x) = \dots$

Propriété

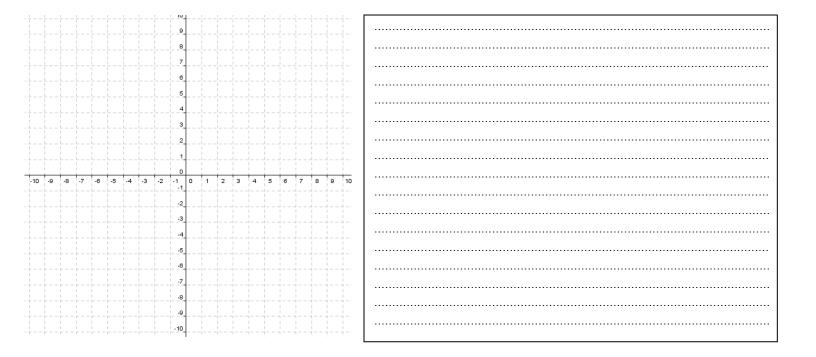
Soil f une fonction affine d'expression f(x)=m x+p alors pour loul nombre a et b (......) On a : $m=\frac{m}{m}$

Savoir-faire

Détermine par lecture graphique le coefficient directeur de la fonction affine représentée ci-dessous.

Savoir-faire

Soit f une fonction affine telle que l'image de 3 soit -5 et que -4 soit un antécédent de 9. Retrouve l'expression de la fonction f.


On a	fonction affine donc son expression est de la forme
	droite non parallèle à l'axe desest la représentation graphique d'un
Définition — On appelle	c) Fonctions linéaires. une fonction dont l'expression est de la forme
Propriélé — Une fonction linéaire	est une

IV. Exercices type brevel:

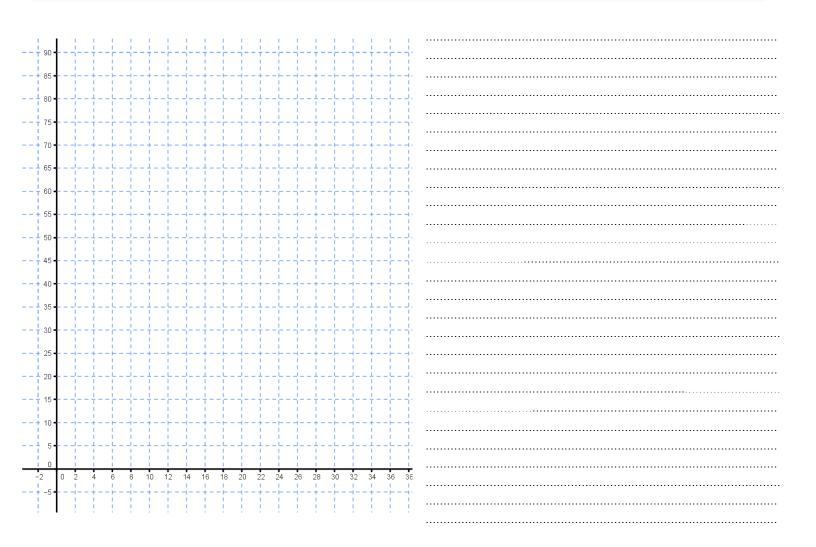
Brevet

f et g sont deux fonctions affines définies par : f(x) = 2x + 2 et g(x) = -3x + 1.

- 1) Dans le repère ci-dessous, tracer les représentations graphiques de f et g.
- **2)** Résoudre l'équation (E) : 2x + 2 = -3x + 1. Que représente la solution de cette équation ?

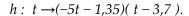
Brevet

Un vidéoclub propose différents tarifs pour l'emprunt de DVD.


- Tarif A : 4 € par DVD emprunté. Tarif B : 2,50 € par DVD emprunté, après avoir payé un abonnement de 18 €.
- Tarif C : abonnement de 70 € pour un nombre illimité de DVD.
- 1. Compléter le tableau suivant indiquant le prix à payer pour 5 ou 15 ou 25 DVD, aux tarifs A, B ou C.

	5 DVD	15 DVD	25 DVD
Coût au tarif A			
Coût au tarif B			
Coût au tarif C			

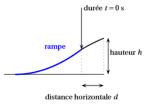
- **2.** On note x le nombre de DVD empruntés. On admet que les trois tarifs peuvent être exprimés à l'aide des fonctions définies par les expressions suivantes : f(x) = 2.5x + 18; g(x) = 70; h(x) = 4x
 - a) Associer à chaque tarif la fonction qui lui correspond.
 - b) Avec le tarif B, Zoé a payé 48€. Combien a-t-elle prit de DVD?
- 3. Tracer dans un même repère les représentations graphiques de ces trois fonctions.

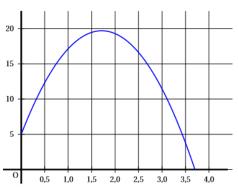

On prendra en abscisse 1 carreau pour 2 DVD et en ordonnée 1 carreau pour 5 €.

- **4. a)** Résoudre l'équation : 4x = 2.5x + 18. Interpréter le résultat.
 - b) Mettre en évidence comment trouver la solution de cette équation sur le graphique en utilisant des pointillés.
- **5.** a) Résoudre graphiquement l'inéquation : 70 > 2.5x + 18, en laissant apparents les traits de construction.
 - b) Retrouver ensuite le résultat par le calcul.
- 6. Synthèse : donner le tarif le plus intéressant selon le nombre de DVD empruntés.

Lors d'une course en moto-cross, après avoir franchi une rampe, Gaëtan a effectué un saut record en moto. Le saut commence dès que Gaëtan quitte la rampe.

On note t la durée (en secondes) de ce saut. La hauteur (en mètres) est déterminée en fonction de la durée t par la fonction h suivante :

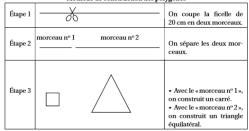



Voici la courbe représentative de cette fonction h.

Les affirmations suivantes sont-elles vraies ou fausses? Justifie en utilisant soit le graphique soit des calculs.

1. En développant et en réduisant l'expression de h on obtient $h(t) = -5t^2 - 19,85t - 4,995$.

- 2. Lorsqu'il quitte la rampe, Gaëtan est à 3,8 m de hauteur.
- 3. Le saut de Gaëtan dure moins de 4 secondes.
- 4. Le nombre 3,5 est un antécédent du nombre 3,77 par la fonction h.
- 5. Gaetan a obtenu la hauteur maximale avant 1,5 seconde.



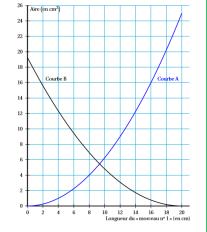
Brevet

Avec des ficelles de 20 cm, on construit des polygones comme ci-dessous :

Méthode de construction des polygones

Partie 1 :

Dans cette partie, on découpe à l'étape 1 une ficelle pour que le « morceau n° 1 » mesure 8 cm.


- 1. Dessiner en grandeur réelle les deux polygones obtenus
- 2. Calculer l'aire du carré obtenu
- ${\bf 3.} \ \ Estimer \ l'aire \ du \ triangle \ \'equilat\'eral \ obtenu \ en \ mesurant \ sur \ le \ dessin.$

Partie 2 :

Dans cette partie, on cherche maintenant à étudier l'aire des deux polygones obte nus à l'étape 3 en fonction de la longueur du « morceau n° 1 ».

- 1. Proposer une formule qui permet de calculer l'aire du carré en fonction de la longueur du « morceau $n^\alpha\, 1$ ».
- 2. Sur le graphique ci-dessous :
 - la courbe A représente la fonction qui donne l'aire du carré en fonction de la longueur du « morceau nº 1 »;
 la courbe B représente la fonction qui donne l'aire du triangle équilatéral
 - la courbe B représente la fonction qui donne l'aire du triangle équilatéral en fonction de la longueur du « morceau nº 1 ».

Graphique représentant les aires des polygones en fonction de la longueur du « morceau n° l »

En utilisant ce graphique, répondre aux questions suivantes. Aucune justification n'est attendue.

- a. Quelle est la longueur du « morceau nº 1 » qui permet d'obtenir un triangle équilatéral d'aire $14\ cm^2$?
- b. Quelle est la longueur du « morceau $n^{\rm o}\,1$ » qui permet d'obtenir deux polygones d'aires égales ?