Exercice I. ROC (2 points)

- 1. Montrer par récurrence l'inégalité de Bernoulli : Soit un réel a > 0 $\forall \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$.
- **2.** Démontrer que pour tout nombre q > 1, $\lim_{n \to \infty} q^n = +\infty$.

Exercice II. Suites arithmético-géométrique.

(2 points)

On considère la suite (u_n) définie par u_0 = 8 et, pour tout entier naturel n: $u_{n+1} = \frac{1}{2} u_n + 3$ Montrer que la suite (v_n) définie par $v_n = u_n - 6$ est géométrique, en déduire la limite de (u_n) .

Exercice III. Récurrence et convergence monotone

(2.5 points)

Soit (u_n) croissante définie par $u_0 = 0$ et, pour tout entier naturel $n: u_{n+1} = \sqrt{3u_n + 4}$ Montrer par récurrence que la suite (u_n) est majorée par 4, en déduire qu'elle converge.

Exercice IV. (2.5 points)

Soit (u_n) définie par u_0 = 0 et, pour tout entier naturel n: $u_{n+1} = u_n + 2n + 3$

- 1) Montrer (u_n) est croissante.
- 2) Démontrer par récurrence que pour tout entier naturel $n: u_n \ge n^2$
- 3) En déduire la limite de (u_n) .

Exercice V. (1 points)

Calcule les limites suivantes, en justifiant ta réponse :

a)
$$\lim_{n \to +\infty} \frac{3n+2}{n^2-1}$$

b)
$$\lim_{n \to +\infty} \frac{3n^2 + 2n^2}{n^2 + 4n^2}$$

c)
$$\lim_{n\to+\infty}\frac{(-1)^n}{n^2}$$

$$\lim_{n \to +\infty} \frac{3n+2}{n^2-1} \qquad b) \quad \lim_{n \to +\infty} \frac{3n^2+2}{n^2+4} \qquad c) \quad \lim_{n \to +\infty} \frac{(-1)^n}{n^2} \qquad d) \quad \lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n}$$