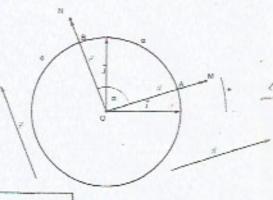
Géométrie vectorielle.	
I. Vecteurs colinéaires.	1
Définition	
Deax recteurs sont dit colineaires si ils out	/=
LQ: MUNIC. GENECHISTE.	
Les recteurs il et is ont la nième direction, ils sont	deut courrence
Soit at et De deux vecteurs. Les affirmations survantes sont	
Note at let to deuse vectours. Its affirmations solvantes sont at the sont collemants # 3 RER/ T= k. T	equivalentes:
Remarque: 0, 2 vet v sont de même sons.	
Si h < 0, the et is sont der sens contraine.	tous a continue
tar convention, le voiteur rul est colinéaire avec	LEANS LOS TURCULUUS.
Dans un renère, on considere les verteurs: Il (2:4) et à	P (2'14')
How It et to sout colineoises si seulement si xy'- n'y = 0	
Démonstration :	
Done n= h x' et y = h y'	On a x = kx
Donc xy'- x'u = k x'u'- x'ku = 0	4 = 44
Neigroque ment: 4 Si xy'-2l'y=0-	0 0
* Si it = 0 0x * Si it = 0 alow n = ou y = 0	Done I'- k I
on suprose x =0	coliniaires.
Qu pore k = x'	
Exemple:	
2 (2;1) et v (-6;3) x y-x y-2x(3)-(-6) x1=-6+6=0	21
(Revorque: v=-3. il)	/3
II. Equations de droite.	
Vecteur directeur d'une droite	
—— Délinition	
Dolt It un rectaux et (d) une droite	
andit que at est nectour structeur de (d) si	
1 Mar XQ ALIGHED DICORDON	
et(d) out la rueme direction	

2) Equation cartésienne d'une droite


Shéorème -
Toute droite a une equation de la forme ax + by +c = 0, avec a +0 ou l +0 le verteur te (-b, a) est un verteur directeur de la aborte
Démonstration: * Une droite -a une aquation de la forme x = k ar y=mx+p Denc x-k=0 ou mx-y=0
Lax+by+c=0 s'apelle equation contenience de droite)
Menontrons que Il (-6-0) est un recteur dérecteur de (d): ax+by+c=0 Noit A(xa:yn) & d) donc axa+by+c=0 alors AR(xn-xa;yn-ya) - (ax n+bxyn)+(aza+
Noit A(xx, yn) & b) down axx + byx + C=0 alors AR (xx-xx, ym-yx) - (axx + byx) + (axx + byx) + (axx + byx) - a(xx-xx) - (c) +
Alors le vecteur u de coordonnées (5 ; 4) est un vecteur directeur de d.
Soit a bette tras nombre avec a +0 or 6 +0 clors l'ensemble der
marits M(x; y) tel que ax + by+ c= 0 est une drate.
Savoir faire: Savoir déterminer une équation de droite à partir d'un point et d'un vecteur directeur. On considère un repère $(O;i;j)$ du plan.
1) Déterminer une équation cartésienne de la droite d passant par le point A(3 ; 1) et de vecteur directeur u (-1 ; 5).
Dence (d) as sure Equation = 6 la forme 5x 14+c=0 5x 14-16=0.
2) Déterminer une équation cartésienne de la droite d' passant par les points B(5;3) et C(1;-3).
- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18
3) Equation cartésienne et équation réduite
Si $b \neq 0$, alors l'équation cartésienne $ax + by + c = 0$ peut être ramenée à une équation réduite $ax + by + c = 0$
Le coefficient directeur de la droite est -, son ordonnée à l'origine est - et un vecteur directeur est. (1; -)
Exemple: Soit d dont une droite d'équation cartésienne $4x + y - 6 = 0$. Aux. Mateur. directeur. de (d) et \vec{x} $(-1;4)$ un weekeur. directeur de (d) et \vec{x} $(1;-4)$ L'aguation réduite de (d) et $(m=-4:p=6)$ \vec{x} et \vec{x} sout coloridaires
4) Parallélisme de droites
Propriété 1.97 t/d) ax + by + c=0 et (d'): a'x + l'y' + c'=0 2lors (bl) ((bl') = ab' - ba' = 0
Démonstration: The (-b; a) lest un recteur de (d) 1(2) // (d') == The et To colinéaires
The (-b'; a') and en vectour do (1) (1) (1) (1) (2) If et is colintaines If (-b'; a') and en vectour do (1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
20 - X

II. Décomposition d'un vecteur.
1) Repères du plan
Un repère du plan est donné par un triplé de point (O; I; J) On dit que le repère est orthogonal si (OI) L (OI)
On dit que le repère est orthonomal si (.0.1) 1 (O.7) et (O.7) = O.7
On pose $\overrightarrow{0l} = \vec{i}$ et $0\vec{j} = \vec{j}$. Les vecteurs \vec{i} et \vec{j} ne sont pas colinéaires. On peut alors définir ce repère par $(0; \vec{i}; \vec{j})$
Dans le repire (0,7,7). On dit que M a pour carrolonies (x, y) in OM = x 2 + y 7 De même drive que il (x, y) riquifie il = x 2 + y 7
Expression d'un vecteur en fonction de deux vecteurs non colinéaires
The to the deve exclaim non solinearies plans pour test redent to, il anote the surregue comple (x, y) tel que to = x. It t y. To
☑ Savoir-faire: Savoir choisir une décomposition pertinente pour résoudre un problème. Soit un triangle ABC. D est le milieu de [BC] et E est le milieu de [BD].
Le point F est défini par : $\overrightarrow{AF} = 3 \overrightarrow{AB} + \overrightarrow{AC}$.
Démontrer que les points A, E et F sont alignés.
Plages nous dans le répère (A; AB; AC) (AB et AC ne sont parcole
alors A(0;0) B(1;0) C(0;1) D(\frac{1}{2};\frac{1}{2}) E(\frac{2}{3};\frac{1}{4}) F(3;1)
Done AF (3;1) et AE (3;1)
Que AF = 4, AF
None AF et AE sont colinéaures
Vone A E et F sont alignes

III. Angle orienté d'un couple de vecteur.

1) définition

Soit \vec{u} et \vec{v} deux vecteurs non nuls. On considère le cercle trigonométrique de centre_O. Soit M et N tels que $\vec{u} = \overrightarrow{OM}$ et $\vec{v} = \overrightarrow{ON}$. Les demi droites OM) et ON) coupent le cercle en A et B. Soit α une mesure en radian de l'angle \overline{AOB} .

-Définition .

On dit que α est une *la compa de l'angle de l'angle de l'angle de l'angle de l'angle de l'angle orienté* $(\vec{u}; \vec{v})$ est de la forme $(\vec{u}; \vec{v})$ où k est un entier relatif.

Mesure principale d'un angle orienté

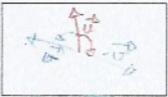
Définition -

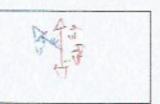
La mesure principale d'un angle orienté est la mesure, qui parmi toutes les autres, se situe dans l'intervalie] - TI; II

3) Angle orientés et colinéarité.

Propriété

u et v sont colinéaires et de même sens équivaut à (u; v) =...Q+,2 k1 \vec{u} et \vec{v} sont colinéaires et de sens contraires équivaut à $(\vec{u}; \vec{v}) = \vec{x} + 2k\vec{y}$


4) Relation de Chasles


-Propriété

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} non nuls $(\vec{u}; \vec{v}) + (\vec{v}; \vec{w}) = (\vec{u}; \vec{w})$

-Conséquences	
Consequences 7 17 17 17 17 17 17 17 17 17 17 17 17 1	
Pour tous vecteurs \vec{u} et \vec{v} non nuls : $(\vec{u}; \vec{v}) + (\vec{v}; \vec{w}) = (\vec{u}; \vec{v})$ $\otimes (\vec{v}; \vec{u}) = (\vec{u}; \vec{v}) = $	
$\Theta(\vec{q}\cdot\vec{q}) = -(\vec{q}\cdot\vec{p}) \Theta(\vec{q}\cdot\vec{q}) = 0$	1
(v, a)(a, -v)(a, -v)(a, -v)(a, -v)(a, -v)	1

-

 	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		