Arithmétique.
La division euclidienne.
Définition : Soit a et b deux nombres entiers positifs.
Effectuer la division euclidienne de a par b c'est déterminer deux nombres q et r tels que a = b q + r avec 0 ≤ r < b.
On dit que q est le quotient quotient et r le reste le la division euclidienne de a par b.
Outil : Calculateur de division euclidienne.
Définition : Soit a et b deux nombres entiers positifs.
Lorsque le reste dans la division euclidienne de a par b est égal à 0, on dit que a divise b.
Multiples et diviseurs.
Définition : Soit a et b deux entiers relatifs.
S’il existe un entier q tel que a=bq alors on dit que b est un diviseur de a et que a est un multiple de b.
Outil : Calculateur de multiples et de diviseurs.
Propriété ( démonstration exigible ) : La somme de deux multiples d’un entier a est un multiple de a.
Nombres pairs, nombres impairs.
Définition : Soit a un entier relatif.
♦ On dit que a est un nombre pair s’il est divisible par 2. Il existe alors un entier relatif n tel que a = 2n.
♦ On dit que a est un nombre impair s’il n’est pas divisible par 2. Il existe alors un entier relatif n tel que a = 2n + 1.
Outil : Calculateur de parité d'un nombre.
Propriété ( démonstration exigible ) : Le carré d’un nombre impair est impair.
Nombres premiers.
Définition : On dit qu’un nombre entier naturel p est premier s’il n’a que 2 diviseurs distincts : 1 et p.
Outil : testeur de primalité de nombres.
Définition : On dit que deux nombres sont premiers entre eux lorsqu'ils ont un seul diviseur : 1 .
Attention : Ne pas confondre un nombre premier et deux nombres premiers entre eux......
Crible d'Érathostène.
![]() |
Érathostène ( III° siècle av JC ) parcours la liste des nombres entiers en supprimant les multiples des nombres rencontrés, les nombres restants sont donc les nombres premiers. |
Propriété : Un nombre p est premier s’il n’est divisible par aucun nombre compris entre 2 et √p.
Décomposition d'un nombre en facteurs premiers.
Propriété : Tout nombre se décompose de façon unique comme produit de facteurs premiers.
Outil : décomposeur de nombre.
Application à la simplification des fractions.
Définition : On dit qu’une fraction est irréductible, lorsque son numérateur et son dénominateur sont premiers entre eux.
Outil : Simplificateur de fractions.